ترغب بنشر مسار تعليمي؟ اضغط هنا

Grains in disks around young stars grow from interstellar submicron sizes to planetesimals over the course of several Myr. Thermal emission of large grains or pebbles can be best observed at cm wavelengths. However, other emission mechanisms can cont ribute. We aim to determine the mechanisms of cm emission for 3 T Tauri stars. WW Cha and RU Lup were recently found to have grain growth at least up to mm sizes in their circumstellar disks. CS Cha has similar indications for grain growth in its circumbinary disk. The T Tauri stars WW Cha and RU Lup were monitored over several years at mm and cm wavelengths, using ATCA. The new ATCA 7 mm system was also used to observe CS Cha. WW Cha was detected on several occasions at 7 and 16 mm. We obtained one detection of WW Cha at 3 cm and upper limits only at 6 cm. The emission at 16 mm was stable over days, months and years, but the emission at 3 cm is found to be variable. RU Lup was detected at 7 mm. It was observed at 16 mm 3 times and at 3 and 6 cm 4 times and found to be variable in all 3 wavebands. CS Cha was detected at 7 mm, but the S/N was too low to resolve the gap in the circumbinary disk. The emission at 3, 7 and 16 mm for WW Cha is well explained by thermal emission from mm and cm-sized pebbles. The cm spectral index is consistent with the emission from an optically-thick ionised wind, but the high variability of the cm emission points to a non-thermal contribution. The SEDs of RU Lup and CS Cha from 1 to 7 mm are consistent with thermal emission from mm-sized grains. The variability of the longer-wavelength emission for RU Lup and the negative spectral index suggest non-thermal emission.
(abbreviated) We aim to determine the masses of the envelopes, disks, and central stars of young stellar objects (YSOs) in the Class I stage. We observed the embedded Class I objects IRS 63 and Elias 29 in the rho Ophiuchi star-forming region with th e Submillimeter Array (SMA) at 1.1 mm. IRS 63 and Elias 29 are both clearly detected in the continuum, with peak fluxes of 459 resp. 47 mJy/beam. The continuum emission toward Elias 29 is clearly resolved, whereas IRS 63 is consistent with a point source down to a scale of 3 arcsec (400 AU). The SMA data are combined with single-dish data, and disk masses of 0.055 and >= 0.007 MSun and envelope masses of 0.058 and >= 0.058 MSun are empirically determined for IRS 63 and Elias 29, respectively. The disk+envelope systems are modelled with the axisymmetric radiative-transfer code RADMC, yielding disk and envelope masses that differ from the empirical results by factors of a few. HCO+ J = 3-2 is detected toward both sources, HCN J = 3-2 is not. The HCO+ position-velocity diagrams are indicative of Keplerian rotation. For a fiducial inclination of 30 degrees, we find stellar masses of 0.37 +/- 0.13 and 2.5 +/- 0.6 MSun for IRS 63 and Elias 29, respectively. We conclude that the sensitivity and spatial resolution of the SMA at 1.1 mm allow a good separation of the disks around Class I YSOs from their circumstellar envelopes and environments, and the spectral resolution makes it possible to resolve their dynamical structure and estimate the masses of the central stars. The ratios of the envelope and disk masses are found to be 0.2 and 6 for IRS 63 and Elias 29, respectively. This is lower than the values for Class 0 sources, which have Menv/Mdisk >= 10, suggesting that this ratio is a tracer of the evolutionary stage of a YSO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا