ترغب بنشر مسار تعليمي؟ اضغط هنا

We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as SGS models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, LANS-alpha and Leray-alpha (at Re ~ 3300, Taylor Re ~ 790) and to a DNS. We derive the Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark as well as its associated k^(-1) energy spectrum. At sub-filter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady-state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark reproduces the energy spectrum and intermittency properties of the DNS. For the Leray model, increasing the filter width decreases the nonlinearity and the effective Re is substantially decreased. Even for the smallest value of alpha studied, Leray-alpha was inadequate as a SGS model. The LANS energy spectrum k^1, consistent with its so-called rigid bodies, precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in resolution. However, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar Karman-Howarth equation). Clark is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha.
We compute solutions of the Lagrangian-Averaged Navier-Stokes alpha-model (LANS) for significantly higher Reynolds numbers (up to Re 8300) than have previously been accomplished. This allows sufficient separation of scales to observe a Navier-Stokes (NS) inertial range followed by a 2nd LANS inertial range. The analysis of the third-order structure function scaling supports the predicted l^3 scaling; it corresponds to a k^(-1) scaling of the energy spectrum. The energy spectrum itself shows a different scaling which goes as k^1. This latter spectrum is consistent with the absence of stretching in the sub-filter scales due to the Taylor frozen-in hypothesis employed as a closure in the derivation of LANS. These two scalings are conjectured to coexist in different spatial portions of the flow. The l^3 (E(k) k^(-1)) scaling is subdominant to k^1 in the energy spectrum, but the l^3 scaling is responsible for the direct energy cascade, as no cascade can result from motions with no internal degrees of freedom. We verify the prediction for the size of the LANS attractor resulting from this scaling. From this, we give a methodology either for arriving at grid-independent solutions for LANS, or for obtaining a formulation of a LES optimal in the context of the alpha models. The fully converged grid-independent LANS may not be the best approximation to a direct numerical simulation of the NS equations since the minimum error is a balance between truncation errors and the approximation error due to using LANS instead of the primitive equations. Furthermore, the small-scale behavior of LANS contributes to a reduction of flux at constant energy, leading to a shallower energy spectrum for large alpha. These small-scale features, do not preclude LANS to reproduce correctly the intermittency properties of high Re flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا