ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show tha t the distribution of dwarf galaxies in a WDM universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider--the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF of small voids--are nearly identical in CDM and WDM. WDM voids are neither larger nor emptier than CDM voids, when constructed from abundance-matched halo catalogs. It is thus a challenge to determine whether the CDM problem of the over-abundance of small halos with respect to the number density of observed dwarf galaxies has a cosmological solution or an astrophysical solution. However, some clues about the dark matter particle and the scatter between the properties of dwarf galaxies and their dark matter halo hosts might be found in the cosmic web of galaxies in future surveys of the local volume.
97 - Darren S. Reed 2012
Cosmological surveys aim to use the evolution of the abundance of galaxy clusters to accurately constrain the cosmological model. In the context of LCDM, we show that it is possible to achieve the required percent level accuracy in the halo mass func tion with gravity-only cosmological simulations, and we provide simulation start and run parameter guidelines for doing so. Some previous works have had sufficient statistical precision, but lacked robust verification of absolute accuracy. Convergence tests of the mass function with, for example, simulation start redshift can exhibit false convergence of the mass function due to counteracting errors, potentially misleading one to infer overly optimistic estimations of simulation accuracy. Percent level accuracy is possible if initial condition particle mapping uses second order Lagrangian Perturbation Theory, and if the start epoch is between 10 and 50 expansion factors before the epoch of halo formation of interest. The mass function for halos with fewer than ~1000 particles is highly sensitive to simulation parameters and start redshift, implying a practical minimum mass resolution limit due to mass discreteness. The narrow range in converged start redshift suggests that it is not presently possible for a single simulation to capture accurately the cluster mass function while also starting early enough to model accurately the numbers of reionisation era galaxies, whose baryon feedback processes may affect later cluster properties. Ultimately, to fully exploit current and future cosmological surveys will require accurate modeling of baryon physics and observable properties, a formidable challenge for which accurate gravity-only simulations are just an initial step.
85 - Darren S. Reed 2010
We explore the cosmological halo-to-halo scatter of the distribution of mass within dark matter halos utilizing a well-resolved statistical sample of clusters from the cosmological Millennium simulation. We find that at any radius, the spherically-av eraged dark matter density of a halo (corresponding to the smooth-component) and its logarithmic slope are well-described by a Gaussian probability distribution. At small radii (within the scale radius), the density distribution is fully determined by the measured Gaussian distribution in halo concentrations. The variance in the radial distribution of mass in dark matter halos is important for the interpretation of direct and indirect dark matter detection efforts. The scatter in mass profiles imparts approximately a 25 percent cosmological uncertainty in the dark matter density at the Solar neighborhood and a factor of ~3 uncertainty in the expected Galactic dark matter annihilation flux. The aggregate effect of halo-to-halo profile scatter leads to a small (few percent) enhancement in dark matter annihilation background if the Gaussian concentration distribution holds for all halo masses versus a 10 percent enhancement under the assumption of a log-normal concentration distribution. The Gaussian nature of the cluster profile scatter implies that the technique of stacking halos to improve signal to noise should not suffer from bias.
110 - Darren S. Reed 2008
We explore the clustering properties of high redshift dark matter halos, focusing on halos massive enough to host early generations of stars or galaxies at redshift 10 and greater. Halos are extracted from an array of dark matter simulations able to resolve down to the mini-halo mass scale at redshifts as high as 30, thus encompassing the expected full mass range of halos capable of hosting luminous objects and sources of reionization. Halo clustering on large-scales agrees with the Sheth, Mo & Tormen halo bias relation within all our simulations, greatly extending the regime where large-scale clustering is confirmed to be universal at the 10-20% level (which means, for example, that 3sigma halos of cluster mass at z=0 have the same large-scale bias with respect to the mass distribution as 3sigma halos of galaxy mass at z=10). However, on small-scales, the clustering of our massive halos (> ~10^9 Msun/h) at these high redshifts is stronger than expected from comparisons with small-scale halo clustering extrapolated from lower redshifts. This implies non-universality in the scale-dependence of halo clustering, at least for the commonly used parameterizations of the scale-dependence of bias that we consider. We provide a fit for the scale-dependence of bias in our results. This study provides a basis for using extraordinarily high redshift galaxies (redshift ~10) as a probe of cosmology and galaxy formation at its earliest stages. We show also that mass and halo kinematics are strongly affected by finite simulation volumes. This suggests the potential for adverse affects on gas dynamics in hydrodynamic simulations of limited volumes, such as is typical in simulations of the formation of the first stars, though further study is warranted.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا