ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore attractive dipolar interaction in indirect excitons (IXs). For one layer of IXs in a single pair of coupled quantum wells (CQW), the out-of-plane IX electric dipoles lead to repulsive dipolar interaction between IXs. The attractive dipolar interaction between IXs is realized in a 2-CQW heterostructure with two IX layers in two separated CQW pairs. We found both in experimental measurements and theoretical simulations that increasing density of IXs in one layer causes a monotonic energy reduction for IXs in the other layer. We also found an in-plane shift of a cloud of IXs in one layer towards a cloud of IXs in the other layer. This behaviour is qualitatively consistent with attractive dipolar interaction. The measured IX energy reduction and IX cloud shift are higher than the values given by the correlated liquid theory.
Architectural structures such as masonry walls or columns exhibit a slender verticality, in contrast to the squat, sloped forms obtained with typical unconfined granular materials. Here we demonstrate the ability to create freestanding, weight-bearin g, similarly slender and vertical structures by the simple pouring of suitably shaped dry particles into a mold that is subsequently removed. Combining experiments and simulations we explore a family of particle types that can entangle through their non-convex, hooked shape. We show that Z-shaped particles produce granular aggregates which can either be fluid and pourable, or solid and rigid enough to maintain vertical interfaces and build freestanding columns of large aspect ratio (>10) that support compressive loads without external confinement. We investigate the stability of such columns with uniaxial compression, bending, and vibration tests and compare with other particle types including U-shaped particles and rods. We find a pronounced anisotropy in the internal stress propagation together with strong strain-stiffening, which stabilizes rather than destabilizes the structures under load.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا