ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin crossover molecules have recently emerged as a family of compounds potentially useful for implementing molecular spintronics devices. The calculations of the electronic properties of such molecules is a formidable theoretical challenge as one ha s to describe the spin ground state of a transition metal as the legand field changes. The problem is dominated by the interplay between strong electron correlation at the transition metal site and charge delocalization over the ligands, and thus it fits into a class of problems where density functional theory may be inadequate. Furthermore, the crossover activity is extremely sensitive to environmental conditions, which are difficult to fully characterize. Here we discuss the phase transition of a prototypical spin crossover molecule as obtained with diffusion Monte Carlo simulations. We demonstrate that the ground state changes depending on whether the molecule is in the gas or in the solid phase. As our calculation provides a solid benchmark for the theory we then assess the performances of density functional theory. We find that the low spin state is always over-stabilized, not only by the (semi-)local functionals, but even by the most commonly used hybrids (such as B3LYP and PBE0). We then propose that reliable results can be obtained by using hybrid functionals containing about 50% of exact-exchange.
346 - Monica Pozzo , Dario Alfe` 2008
The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H$_2$ molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab-initio density functional theory investigation of H$_2$ dissociation and subsequent atomic H diffusion on TM(=Ti,V,Zr,Fe,Ru,Co,Rh,Ni,Pd,Cu,Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table dont bind H, however, they do not reduce the barrier to dissociate H$_2$ significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا