ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an exactly solvable model for synthetic anyons carrying non-Abelian flux. The model corresponds to a two-dimensional electron gas in a magnetic field with a specific spin interaction term, which allows only fully aligned spin states in the ground state; the ground state subspace is thus two-fold degenerate. This system is perturbed with identical solenoids carrying a non-Abelian gauge potential. We explore dynamics of the ground state as these solenoids are adiabatically braided and show they behave as anyons with a non-Abelian flux. Such a system represents a middle ground between the ordinary Abelian anyons and the fully non-Abelian anyons.
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum (BICs) was recently unveiled. When nonlinearity is added to a HOTI system, a number of fundamentally important questions arise. For example, how does nonlinearity couple higher-order topological BICs with the rest of the system, including continuum states? In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here, we demonstrate the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We observe topological corner states which, serendipitously, are also BICs in a laser-written second-order topological lattice. We further demonstrate nonlinear coupling with edge states at a low nonlinearity, transitioning to solitons at a high nonlinearity. Theoretically, we calculate the analog of the Zak phase in the nonlinear regime, illustrating that a topological BIC can be actively tuned by both focusing and defocusing nonlinearities. Our studies are applicable to other nonlinear HOTI systems, with promising applications in emerging topology-driven devices.
We demonstrate dynamical topological phase transitions in evolving Su-Schrieffer-Heeger (SSH) lattices made of interacting soliton arrays, which are entirely driven by nonlinearity and thereby exemplify emergent nonlinear topological phenomena. The p hase transitions occur from topologically trivial-to-nontrivial phase in periodic succession with crossovers from topologically nontrivial-to-trivial regime. The signature of phase transition is gap-closing and re-opening point, where two extended states are pulled from the bands into the gap to become localized topological edge states. Crossovers occur via decoupling of the edge states from the bulk of the lattice.
The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures. However, when nonlinearity is introduced, many intriguing questions arise. For example, are there universal fingerprints of underlying topology when modes are coupled by nonlinearity, and what can happen to topological invariants during nonlinear propagation? To explore these questions, here we experimentally demonstrate nonlinearity-induced coupling to topologically protected edge states using a photonic platform, and theoretically develop a general framework for interpreting the mode-coupling dynamics in nonlinear topological systems. Performed in laser-written photonic Su-Schrieffer-Heeger lattices, our experiments reveal nonlinear coupling of light into a nontrivial edge or interface defect channel otherwise not permissible due to topological protection. Our theory explains well all the observations. Furthermore, we introduce the concepts of inherited and emergent nonlinear topological phenomena, and a protocol capable of unveiling the interplay of nonlinearity and topology. These concepts are applicable for other nonlinear topological systems, either in higher dimensions or beyond our photonic platform.
We introduce a grating assisted tunneling scheme for tunable synthetic magnetic fields in photonic lattices, which can be implemented at optical frequencies in optically induced one- and two-dimensional dielectric photonic lattices. We demonstrate a conical diffraction pattern in particular realization of these lattices which possess Dirac points in $k$-space, as a signature of the synthetic magnetic fields. The two-dimensional photonic lattice with grating assisted tunneling constitutes the realization of the Harper-Hofstadter Hamiltonian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا