ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive the stacked 1.4 GHz flux from FIRST (Faint Images of the Radio Sky at Twenty Centimeters) survey for 811 K+A galaxies selected from the SDSS DR7. For these objects we find a mean flux density of $56pm 9$ $mu$Jy. A similar stack of radio-qui et white dwarfs yields an upper limit of 43 $mu$Jy at a 5$sigma$ significance to the flux in blank regions of the sky. This implies an average star formation rate of 1.6 $pm$ 0.3 M$_{odot}$ year$^{-1}$ for K+A galaxies. However the majority of the signal comes from $sim$4% of K+A fields that have aperture fluxes above the $5sigma$ noise level of the FIRST survey. A stack of the remaining galaxies shows little residual flux consistent with an upper limit on star formation of 1.3 M$_{odot}$ year$^{-1}$. Even for a subset of 456 `young (spectral ages $<$ 250 Myr) K+A galaxies we find that the stacked 1.4 GHz flux is consistent with no current star formation. Our data suggest that the original starburst has been terminated in the majority of K+A galaxies, but that this may represent part of a duty cycle where a fraction of these galaxies may be active at a given moment with dusty starbursts and AGNs being present.
The WIYN open cluster study (WOCS) has been working to yield precise magnitudes in the Johnson-Kron-Cousins UBVRI system for all stars in the field of a selection of ``prototypical open clusters. Additionally, WOCS is using radial velocities to obtai n orbit solutions for all cluster binary stars with periods of less than 1000 days. Recently, WOCS is being expanded to include the near-infrared JHK_s (deep ground-based plus 2MASS) and mid-infrared ([3.6], [4.5], [5.8], [8.0]) photometry from Spitzer/IRAC observations. This multi-wavelength data (0.3--8.0 microns) allows us photometrically to identify binaries, with mass ratios from 1.0--0.3, across a wide range of primary masses. The spectral energy distribution (SED) fitter by Robitaille et al. (2007) is used to fit the fluxes of 10--12 bands, converted from the observed magnitudes, to Kurucz stellar models. Using this photometric technique, we find that NGC 188 has a binary fraction of 36--49% and provide a star-by-star comparison to the WOCS radial velocity-based binary study.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا