ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we evaluate the self-energy of the vector mesons at one loop in our recently proposed subtraction scheme for massive nonlinearly realized SU(2) Yang-Mills theory. We check the fulfillment of physical unitarity. The resulting self-mass c an be compared with the value obtained in the massive Yang-Mills theory based on the Higgs mechanism, consisting in extra terms due to the presence of the Higgs boson (tadpoles included). Moreover we evaluate all the one-loop counterterms necessary for the next order calculations. By construction they satisfy all the equations of the model (Slavnov-Taylor, local functional equation and Landau gauge equation). They are sufficient to make all the one-loop amplitudes finite through the hierarchy encoded in the local functional equation.
A consistent strategy for the subtraction of the divergences in the nonlinearly realized Electroweak Model in the loop expansion is presented. No Higgs field enters into the perturbative spectrum. The local functional equation (LFE), encoding the inv ariance of the SU(2) Haar measure under local left SU(2) transformations, the Slavnov-Taylor identity, required in order to fulfill physical unitarity, and the Landau gauge equation hold in the nonlinearly realized theory. The quantization is performed in the Landau gauge for the sake of simplicity and elegance. The constraints on the admissible interactions arising from the Weak Power-Counting (WPC) are discussed. The same symmetric pattern of the couplings as in the Standard Model is shown to arise, as a consequence of the defining functional identities and the WPC. However, two independent mass invariants in the vector meson sector are possible, i.e. no tree-level Weinberg relation holds between the Z and W mass. Majorana neutrino masses can be implemented in the nonlinearly realized Electroweak Model in a way compatible with the WPC and all the symmetries of the theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا