ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently proposed by Tse and Yates, who char acterized the capacity region for any number of users and any number of layers when there is no COF. This paper provides a comparative overview of this channel model along the following lines: First, inner and outer bounds to the capacity region (set of achievable rates with backlogged arrivals) are presented: a) a new outer bound based on the idea of the physically degraded broadcast channel, and b) an inner bound of the LPE-BC with COF for the case of two users and any number of layers. Next, an inner bound on the stability region (set of exogenous arrival rates for which packet arrival queues are stable) for the same model is derived. The capacity region inner bound generalizes past results for the two-user erasure BC, which is a special case of the LPE-BC with COF with only one layer. The novelty lies in the use of inter-user and inter-layer network coding retransmissions (for those packets that have only been received by the unintended user), where each random linear combination may involve packets intended for any user originally sent on any of the layers. For the case of $K = 2$ users and $Q geq 1$ layers, the inner bounds to the capacity region and the stability region coincide; both strategically employ the novel retransmission protocol. For the case of $Q = 2$ layers, sufficient conditions are derived by Fourier-Motzkin elimination for the inner bound on the stability region to coincide with the capacity outer bound, thus showing that in those cases the capacity and stability regions coincide.
This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding in the sense that each user must decode its demanded function with signals received from any subset of servers whose cardinality exceeds a threshold. In addition, (a) the content of the library must be kept secure from a wiretapper who obtains all the signals from the servers;(b) any subset of users together can not obtain any information about the demands of the remaining users; and (c) the users demands must be kept private against all the servers even if they collude. Achievable schemes are derived by modifying existing Placement Delivery Array (PDA) constructions, originally proposed for single-server single-file retrieval coded caching systems without any privacy or security or robustness constraints. It is shown that the PDAs describing the original Maddah-Ali and Niesens coded caching scheme result in a load-memory tradeoff that is optimal to within a constant multiplicative gap, except for the small memory regime when the number of file is smaller than the number of users. As by-products, improved order optimality results are derived for three less restrictive systems in all parameter regimes.
This work investigates the problem of cache-aided content Secure and demand Private Linear Function Retrieval (SP-LFR), where three constraints are imposed on the system:(a) each user is interested in retrieving an arbitrary linear combination of the files in the servers library;(b) the content of the library must be kept secure from a wiretapper who obtains the signal sent by the server; and (c) no colluding subset of users together obtain information about the demands of the remaining users. A procedure is proposed to derive an SP-LFR scheme from a given Placement Delivery Array (PDA), which is known to give coded caching schemes with low subpacketization for systems with neither security nor privacy constraints. This procedure uses the superposition of security keys and privacy keys in both the cache placement and transmitted signal to guarantee content security and demand privacy, respectively. In particular, among all PDA-based SP-LFR schemes, the memory-load pairs achieved by the PDA describing the Maddah-Ali and Niesens scheme are Pareto-optimal and have the lowest subpacketization. Moreover, the achieved load-memory tradeoff is optimal to within a constant multiplicative gap except for the small memory regime (i.e., when the cache size is between 1 and 2) and the number of files is smaller than the number of users. Remarkably, the memory-load tradeoff does not increase compared to the best known schemes that guarantee either only content security in all regimes or only demand privacy in regime mentioned above.
This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is strong er than similar notions adopted in past work and is motivated by the practical need to insure privacy regardless of the file distribution. Two scenarios are considered: Single File Retrieval (SFR) and Linear Function Retrieval (LFR), where in the latter case each user demands an arbitrary linear combination of the files at the server. The main contributions of this paper are a novel achievable scheme for LFR, referred as privacy key scheme, and a new information theoretic converse bound for SFR. Clearly, being SFR a special case of LFR, an achievable scheme for LFR works for SFR as well, and a converse for SFR is a valid converse for LFR as well. By comparing the performance of the achievable scheme with the converse bound derived in this paper (for the small cache size regime) and existing converse bounds without privacy constraints (in the remaining memory regime), the communication load of the privacy key scheme turns out to be optimal to within a constant multiplicative gap in all parameter regimes. Numerical results show that the new privacy key scheme outperforms in some regime known schemes based on the idea of virtual users, which also satisfy the stronger notion of user privacy against colluding users adopted here. Moreover, the privacy key scheme enjoys much lower subpacketization than known schemes based on virtual users.
In this paper, the capacity region of the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter is investigated. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently pro posed by Tse and Yates, who characterized the capacity region for any number of users and any number of layers when there is no COF. This paper derives capacity inner and outer bounds for the LPE-BC with COF for the case of two users and any number of layers. The inner bounds generalize past results for the two-user erasure BC, which is a special case of the LPE-BC with COF with only one layer. The novelty lies in the use of emph{inter-user & inter-layer network coding} retransmissions (for those packets that have only been received by the unintended user), where each random linear combination may involve packets intended for any user originally sent on any of the layers. Analytical and numerical examples show that the proposed outer bound is optimal for some LPE-BCs.
The problem of estimating an arbitrary random vector from its observation corrupted by additive white Gaussian noise, where the cost function is taken to be the Minimum Mean $p$-th Error (MMPE), is considered. The classical Minimum Mean Square Error (MMSE) is a special case of the MMPE. Several bounds, properties and applications of the MMPE are derived and discussed. The optimal MMPE estimator is found for Gaussian and binary input distributions. Properties of the MMPE as a function of the input distribution, SNR and order $p$ are derived. In particular, it is shown that the MMPE is a continuous function of $p$ and SNR. These results are possible in view of interpolation and change of measure bounds on the MMPE. The `Single-Crossing-Point Property (SCPP) that bounds the MMSE for all SNR values {it above} a certain value, at which the MMSE is known, together with the I-MMSE relationship is a powerful tool in deriving converse proofs in information theory. By studying the notion of conditional MMPE, a unifying proof (i.e., for any $p$) of the SCPP is shown. A complementary bound to the SCPP is then shown, which bounds the MMPE for all SNR values {it below} a certain value, at which the MMPE is known. As a first application of the MMPE, a bound on the conditional differential entropy in terms of the MMPE is provided, which then yields a generalization of the Ozarow-Wyner lower bound on the mutual information achieved by a discrete input on a Gaussian noise channel. As a second application, the MMPE is shown to improve on previous characterizations of the phase transition phenomenon that manifests, in the limit as the length of the capacity achieving code goes to infinity, as a discontinuity of the MMSE as a function of SNR. As a final application, the MMPE is used to show bounds on the second derivative of mutual information, that tighten previously known bounds.
This paper considers a Gaussian channel with one transmitter and two receivers. The goal is to maximize the communication rate at the intended/primary receiver subject to a disturbance constraint at the unintended/secondary receiver. The disturbance is measured in terms of minimum mean square error (MMSE) of the interference that the transmission to the primary receiver inflicts on the secondary receiver. The paper presents a new upper bound for the problem of maximizing the mutual information subject to an MMSE constraint. The new bound holds for vector inputs of any length and recovers a previously known limiting (when the length of vector input tends to infinity) expression from the work of Bustin $textit{et al.}$ The key technical novelty is a new upper bound on the MMSE. This bound allows one to bound the MMSE for all signal-to-noise ratio (SNR) values $textit{below}$ a certain SNR at which the MMSE is known (which corresponds to the disturbance constraint). This bound complements the `single-crossing point property of the MMSE that upper bounds the MMSE for all SNR values $textit{above}$ a certain value at which the MMSE value is known. The MMSE upper bound provides a refined characterization of the phase-transition phenomenon which manifests, in the limit as the length of the vector input goes to infinity, as a discontinuity of the MMSE for the problem at hand. For vector inputs of size $n=1$, a matching lower bound, to within an additive gap of order $O left( log log frac{1}{sf MMSE} right)$ (where ${sf MMSE}$ is the disturbance constraint), is shown by means of the mixed inputs technique recently introduced by Dytso $textit{et al.}$
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا