ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $ tau$, and $F_n$ the corresponding empricial cdf. This seems rather counterintuitive, since, for every $n in N$, there is a deterministic correspondence between $alpha_n$ and $beta_n$. Precisely, we show that the pair $(alpha_n,beta_n)$ converges in law to a limit having independent components, namely a time-transformed Brownian bridge and a two-sided Poisson process. Since these processes have jumps, in particular if $F$ itself has jumps, the Skorokhod product space $D(R) times D(R)$ is the adequate choice for modeling this convergence in. We develop a short convergence theory for $D(R) times D(R)$ by establishing the classical principle, devised by Yu. V. Prokhorov, that finite-dimensional convergence and tightness imply weak convergence. Several tightness criteria are given. Finally, the convergence of the pair $(alpha_n,beta_n)$ implies convergence of each of its components, thus, in passing, we provide a thorough proof of these known convergence results in a very general setting. In fact, the condition on $F$ to be differentiable in at least one point is only required for $beta_n$ to converge and can be further weakened.
Many popular robust estimators are $U$-quantiles, most notably the Hodges-Lehmann location estimator and the $Q_n$ scale estimator. We prove a functional central limit theorem for the sequential $U$-quantile process without any moment assumptions and under weak short-range dependence conditions. We further devise an estimator for the long-run variance and show its consistency, from which the convergence of the studentized version of the sequential $U$-quantile process to a standard Brownian motion follows. This result can be used to construct CUSUM-type change-point tests based on $U$-quantiles, which do not rely on bootstrapping procedures. We demonstrate this approach in detail at the example of the Hodges-Lehmann estimator for robustly detecting changes in the central location. A simulation study confirms the very good robustness and efficiency properties of the test. Two real-life data sets are analyzed.
The consistency and asymptotic normality of the spatial sign covariance matrix with unknown location are shown. Simulations illustrate the different asymptotic behavior when using the mean and the spatial median as location estimator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا