ترغب بنشر مسار تعليمي؟ اضغط هنا

We present surface resistance measurements of the archetypical heavy-fermion compound CeCu6 for frequencies between 3.7 and 18 GHz and temperatures from 1.2 to 6 K. The measurements were performed with superconducting stripline resonators that allow simultaneous measurements at multiple frequencies. The surface resistance of CeCu6 exhibits a pronounced decrease below 3 K, in consistence with dc resistivity. The low-temperature frequency dependence of the surface resistance follows a power law with exponent 2/3. While for conventional metals this would be consistent with the anomalous skin effect, we discuss the present situation of a heavy-fermion metal, where this frequency dependence might instead stem from the influence of electronic correlations.
We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1- 6K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا