ترغب بنشر مسار تعليمي؟ اضغط هنا

The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the WFC3 instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1{sigma}.
We present L band (3.8 $mu m$) MMT/Clio high-contrast imaging data for the nearby star GJ 758, which was recently reported by Thalmann et al. (2009) to have one -- possibly two-- faint comoving companions (GJ 758B and ``C, respectively). GJ 758B is d etected in two distinct datasets. Additionally, we report a textit{possible} detection of the object identified by Thalmann et al as ``GJ 758C in our more sensitive dataset, though it is likely a residual speckle. However, if it is the same object as that reported by Thalmann et al. it cannot be a companion in a bound orbit. GJ 758B has a H-L color redder than nearly all known L--T8 dwarfs. Based on comparisons with the COND evolutionary models, GJ 758B has T$_{e}$ $sim$ 560 K$^{^{+150 K}_{-90K}}$ and a mass ranging from $sim$ 10--20 M$_{J}$ if it is $sim$ 1 Gyr old to $sim$ 25--40 M$_{J}$ if it is 8.7 Gyr old. GJ 758B is likely in a highly eccentric orbit, e $sim$ 0.73$^{^{+0.12}_{-0.21}}$, with a semimajor axis of $sim$ 44 AU$^{^{+32 AU}_{-14 AU}}$. Though GJ 758B is sometimes discussed within the context of exoplanet direct imaging, its mass is likely greater than the deuterium-burning limit and its formation may resemble that of binary stars rather than that of jovian-mass planets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا