ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss two geosynchronous gravitational wave mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developmen ts in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms we propose a two-stage drag-free system, which incorporates the Modular Gravitational Reference Sensor (MGRS) (developed at Stanford University) and does not rely on the use of micro-Newton thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions. We estimate both mission concepts to cost less than 500M US$ each, and in the year 2015 we will perform at JPL a detailed selecting mission cost analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا