ترغب بنشر مسار تعليمي؟ اضغط هنا

Harpers equation (aka the almost Mathieu equation) famously describes the quantum dynamics of an electron on a one dimensional lattice in the presence of an incommensurate potential with magnitude $V$ and wave number $Q$. It has been proven that all states are delocalized if $V$ is less than a critical value $V_c=2t$ and localized if $V> V_c$. Here, we show that this result (while correct) is highly misleading, at least in the small $Q$ limit. In particular, for $V<V_c$ there is an abrupt crossover akin to a mobility edge at an energy $E_c$; states with energy $|E|<E_c$ are robustly delocalized, but those in the tails of the density of states, with $|E|>E_c$, form a set of narrow bands with exponentially small bandwidths $ sim t exp[-(2pialpha/Q)]$ (where $alpha$ is an energy dependent number of order 1) separated by band-gaps $ sim t Q$. Thus, the states with $|E|> E_c$ are almost localized in that they have an exponentially large effective mass and are easily localized by small perturbations. We establish this both using exact numerical solution of the problem, and by exploiting the well known fact that the same eigenvalue problem arises in the Hofstadter problem of an electron moving on a 2D lattice in the presence of a magnetic field, $B=Q/2pi$. From the 2D perspective, the almost localized states are simply the Landau levels associated with semiclassical precession around closed contours of constant quasiparticle energy; that they are not truly localized reflects an extremely subtle form of magnetic breakdown.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا