ترغب بنشر مسار تعليمي؟ اضغط هنا

General conservation equations are derived for 2D dense granular flows from the Euler equation within the Boussinesq approximation. In steady flows, the 2D fields of granular temperature, vorticity and stream function are shown to be encoded in two s calar functions only. We checked such prediction on steady surface flows in a rotating drum simulated through the Non-Smooth Contact Dynamics method. This result is non trivial because granular flows are dissipative and therefore not necessarily compatible with Euler equation. Finally, we briefly discuss some possible ways to predict theoretically these two functions using statistical mechanics.
54 - Daniel Bonamy 2008
We derive here a linear elastic stochastic description for slow crack growth in heterogeneous materials. This approach succeeds in reproducing quantitatively the intermittent crackling dynamics observed recently during the slow propagation of a crack along a weak heterogeneous plane of a transparent Plexiglas block [M{aa}l{o}y {it et al.}, PRL {bf 96} 045501]. In this description, the quasi-static failure of heterogeneous media appears as a self-organized critical phase transition. As such, it exhibits universal and to some extent predictable scaling laws, analogue to that of other systems like for example magnetization noise in ferromagnets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا