ترغب بنشر مسار تعليمي؟ اضغط هنا

The process of wide-field synthesis imaging is explored, with the aim of understanding the implications of variable, polarised primary beams for forthcoming Epoch of Reionisation experiments. These experiments seek to detect weak signatures from reds hifted 21cm emission in deep residual datasets, after suppression and subtraction of foreground emission. Many subtraction algorithms benefit from low side-lobes and polarisation leakage at the outset, and both of these are intimately linked to how the polarised primary beams are handled. Building on previous contributions from a number of authors, in which direction-dependent corrections are incorporated into visibility gridding kernels, we consider the special characteristics of arrays of fixed dipole antennas operating around 100-200 MHz, looking towards instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Arrays (HERA). We show that integrating snapshots in the image domain can help to produce compact gridding kernels, and also reduce the need to make complicated polarised leakage corrections during gridding. We also investigate an alternative form for the gridding kernel that can suppress variations in the direction-dependent weighting of gridded visibilities by 10s of dB, while maintaining compact support.
It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا