ترغب بنشر مسار تعليمي؟ اضغط هنا

Magic-angle twisted bilayer graphene (MATBG) has recently emerged as a highly tunable two-dimensional (2D) material platform exhibiting a wide range of phases, such as metal, insulator, and superconductor states. Local electrostatic control over thes e phases may enable the creation of versatile quantum devices that were previously not achievable in other single material platforms. Here, we exploit the electrical tunability of MATBG to engineer Josephson junctions and tunneling transistors all within one material, defined solely by electrostatic gates. Our multi-gated device geometry offers complete control over the Josephson junction, with the ability to independently tune the weak link, barriers, and tunneling electrodes. We show that these purely 2D MATBG Josephson junctions exhibit nonlocal electrodynamics in a magnetic field, in agreement with the Pearl theory for ultrathin superconductors. Utilizing the intrinsic bandgaps of MATBG, we also demonstrate monolithic edge tunneling spectroscopy within the same MATBG devices and measure the energy spectrum of MATBG in the superconducting phase. Furthermore, by inducing a double barrier geometry, the devices can be operated as a single-electron transistor, exhibiting Coulomb blockade. These MATBG tunneling devices, with versatile functionality encompassed within a single material, may find applications in graphene-based tunable superconducting qubits, on-chip superconducting circuits, and electromagnetic sensing in next-generation quantum nanoelectronics.
Strongly interacting electrons in solid-state systems often display tendency towards multiple broken symmetries in the ground state. The complex interplay between different order parameters can give rise to a rich phase diagram. Here, we report on th e identification of intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene (TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located in a wedge above the underdoped region of the superconducting dome. Upon crossing the superconducting dome, a reduction of the critical temperature is observed, similar to the behavior of certain cuprate superconductors. Furthermore, the superconducting state exhibits a anisotropic response to an directional-dependent in-plane magnetic field, revealing a nematic pairing state across the entire superconducting dome. These results indicate that nematic fluctuations might play an important role in the low-temperature phases of magic-angle TBG, and pave the way for using highly-tunable moir{e} superlattices to investigate intertwined phases in quantum materials.
99 - Uri Zondiner 2019
Twisted bilayer graphene near the magic angle exhibits remarkably rich electron correlation physics, displaying insulating, magnetic, and superconducting phases. Here, using measurements of the local electronic compressibility, we reveal that these p hases originate from a high-energy state with an unusual sequence of band populations. As carriers are added to the system, rather than filling all the four spin and valley flavors equally, we find that the population occurs through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moire lattice. At each transition, a single spin/valley flavor takes all the carriers from its partially filled peers, resetting them back to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near the charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breakings. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state we reveal here, with its strongly broken electronic flavor symmetry and revived Dirac-like electronic character, is a key player in the physics of magic angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge.
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great deal of interest, sparked by the discovery of correlated insulating and superconducting states, for twist angle $theta$ close to a so-called magic angle $approx 1.1{deg}$. In this work, we unveil, via near-field optical microscopy, a collective plasmon mode in charge-neutral TBG near the magic angle, which is dramatically different from the ordinary single-layer graphene intraband plasmon. In selected regions of our samples, we find a gapped collective mode with linear dispersion, akin to the bulk magnetoplasmons of a two-dimensional (2D) electron gas. We interpret these as interband plasmons and associate those with the optical transitions between quasi-localized states originating from the moire superlattice. Surprisingly, we find a higher plasmon group velocity than expected, which implies an enhanced strength of the corresponding optical transition. This points to a weaker interlayer coupling in the AA regions. These intriguing optical properties offer new insights, complementary to other techniques, on the carrier dynamics in this novel quantum electron system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا