ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo and quantum simulation are both important tools for understanding quantum many-body systems. As a classical algorithm, quantum Monte Carlo suffers from the sign problem, preventing its applications to most fermion systems and real time dynamics. In this paper, we introduce a novel non-variational algorithm using quantum simulation as a subroutine to accelerate quantum Monte Carlo by easing the sign problem. The quantum subroutine can be implemented with shallow circuits and, by incorporating error mitigation, reduce the Monte Carlo variance by orders of magnitude even when the circuit noise is significant. As such, the proposed quantum algorithm is applicable to near-term noisy quantum hardware.
Helioseismic holography is an imaging technique used to study heterogeneities and flows in the solar interior from observations of solar oscillations at the surface. Holograms contain noise due to the stochastic nature of solar oscillations. We provi de a theoretical framework for modeling signal and noise in Porter-Bojarski helioseismic holography. The wave equation may be recast into a Helmholtz-like equation, so as to connect with the acoustics literature and define the holography Greens function in a meaningful way. Sources of wave excitation are assumed to be stationary, horizontally homogeneous, and spatially uncorrelated. Using the first Born approximation we calculate holograms in the presence of perturbations in sound-speed, density, flows, and source covariance, as well as the noise level as a function of position. This work is a direct extension of the methods used in time-distance helioseismology to model signal and noise. To illustrate the theory, we compute the hologram intensity numerically for a buried sound-speed perturbation at different depths in the solar interior. The reference Greens function is obtained for a spherically-symmetric solar model using a finite-element solver in the frequency domain. Below the pupil area on the surface, we find that the spatial resolution of the hologram intensity is very close to half the local wavelength. For a sound-speed perturbation of size comparable to the local spatial resolution, the signal-to-noise ratio is approximately constant with depth. Averaging the hologram intensity over a number $N$ of frequencies above 3 mHz increases the signal-to-noise ratio by a factor nearly equal to the square root of $N$. This may not be the case at lower frequencies, where large variations in the holographic signal are due to the individual contributions of the long-lived modes of oscillation.
Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents $alpha$. By permuting the independently drawn samples from a power-law distribution, we present non-trivial bounds on the me mory strength (1st-order autocorrelation) as a function of $alpha$, which are markedly different from the ordinary $pm 1$ bounds for Gaussian or uniform distributions. When $1 < alpha leq 3$, as $alpha$ grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when $alpha > 3$, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and browsing behavior of Taobao, we find that empirical power-law distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks, and challenge the validity of measures like autocorrelation and assortativity coefficient in heterogeneous systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا