ترغب بنشر مسار تعليمي؟ اضغط هنا

At Crypto07, Goyal introduced the concept of Accountable Authority Identity-Based Encryption as a convenient tool to reduce the amount of trust in authorities in Identity-Based Encryption. In this model, if the Private Key Generator (PKG) maliciously re-distributes users decryption keys, it runs the risk of being caught and prosecuted. Goyal proposed two constructions: the first one is efficient but can only trace well-formed decryption keys to their source; the second one allows tracing obfuscated decryption boxes in a model (called weak black-box model) where cheating authorities have no decryption oracle. The latter scheme is unfortunately far less efficient in terms of decryption cost and ciphertext size. In this work, we propose a new construction that combines the efficiency of Goyals first proposal with a very simple weak black-box tracing mechanism. Our scheme is described in the selective-ID model but readily extends to meet all security properties in the adaptive-ID sense, which is not known to be true for prior black-box schemes.
In 1998, Blaze, Bleumer, and Strauss suggested a cryptographic primitive named proxy re-signatures where a proxy turns a signature computed under Alices secret key into one from Bob on the same message. The semi-trusted proxy does not learn either pa rtys signing key and cannot sign arbitrary messages on behalf of Alice or Bob. At CCS 2005, Ateniese and Hohenberger revisited the primitive by providing appropriate security definitions and efficient constructions in the random oracle model. Nonetheless, they left open the problem of designing a multi-use unidirectional scheme where the proxy is able to translate in only one direction and signatures can be re-translated several times. This paper solves this problem, suggested for the first time 10 years ago, and shows the first multi-hop unidirectional proxy re-signature schemes. We describe a random-oracle-using system that is secure in the Ateniese-Hohenberger model. The same technique also yields a similar construction in the standard model (i.e. without relying on random oracles). Both schemes are efficient and require newly defined -- but falsifiable -- Diffie-Hellman-like assumptions in bilinear groups.
70 - Damien Vergnaud 2008
The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly verifiable digital signatures but have an additional functionality which allows any holder of a signature to designate the signature to any desired verifier. This designated verifier can check that the message was indeed signed, but is unable to convince anyone else of this fact. We propose new efficient constructions for pairing-based short signatures. Our first scheme is based on Boneh-Boyen signatures and its security can be analyzed in the standard security model. We prove its resistance to forgery assuming the hardness of the so-called strong Diffie-Hellman problem, under the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption that the computational bilinear Diffie-Hellman problem is untractable. Both schemes are designed for devices with constrained computation capabilities since the signing and the designation procedure are pairing-free. Finally, we present extensions of these schemes in the multi-user setting proposed by Desmedt in 2003.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا