ترغب بنشر مسار تعليمي؟ اضغط هنا

151 - Dale Mudd , K.Z. Stanek 2014
The hottest stars ($>$10,000 K), and by extension typically the most massive ones, are those that will be prevalent in the ultraviolet (UV) portion of the electromagnetic spectrum, and we expect numerous B, O, and Wolf-Rayet stars to be bright in UV data. In this paper, we update the previous UV catalog of M33, created using the Ultraviolet Imaging Telescope (UIT), using data from the Galaxy Evolution Explorer (GALEX). We utilize PSF photometry to better handle the crowded regions in the galaxy, and benefit from GALEXs increased sensitivity compared to UIT. We match our detections with data from the Local Group Galaxies Survey (LGGS) to create a catalog with photometry spanning from the far-UV through the optical for a final list of 24738 sources. All of these sources have far-UV (FUV; 1516A), near-UV (NUV; 2267A), and V data, and a significant fraction also have U, B, R, and I data as well. We compare these sources to a catalog of known Wolf-Rayet stars in M33 and find that we recover 114 of 206 stars with spatially-coincident UV objects. Additionally, we highlight and investigate those sources with unique colors as well as a selection of other well-studied sources in M33.
We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second, IRAS 20550+1656, and third, IRAS 19354+4559, have only a single X-ray sour ce detected. We compare the observed emission to PSF profiles and determine that three are extended in emission. One is compact, which is suggestive of an AGN, although all of our profiles have large uncertainties. We then model the spectra to determine soft (0.5--2 keV) and hard (2--10 keV) luminosities for the resolved sources and then compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities of $log(L_{textrm{soft}}/textrm{L}_{odot}) = 7.32,:7.06,:7.68$ and $log(L_{textrm{hard}}/textrm{L}_{odot}) = 7.33,: 7.07,: 7.88$ for IRAS 18329+5950, IRAS 19354+4559, and IRAS 20550+1656, respectively. These are intermediate to two separate predictions in the literature for star-formation-dominated sources. Our highest quality spectrum of IRAS 20550+1656 suggests super-solar abundance of alpha elements at $2sigma$ significance, with $log(frac{alpha}{alpha_{odot}}) = [alpha] = 0.4pm0.2$. This is suggestive of recent enrichment with Type II supernovae, consistent with a starburst environment. The X-ray properties of the target galaxies are most likely due to starbursts, but we cannot conclusively rule out AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا