ترغب بنشر مسار تعليمي؟ اضغط هنا

The hadronic tau decay $tau^- to u_tau eta pi^- pi^0$ occurs through V-A weak current. In this decay mode, the vector current contribution is intrinsic parity violating and the axial current contribution is G parity violating. The latter contributio n is suppressed due to tiny isospin breaking. We have computed both vector and axial vector form factors using a chiral Lagrangian with vector mesons including the effect of isospin breaking and intrinsic parity violation. A numerical result of the invariant mass distribution is shown and the structure of $rho$ resonance can be seen in the distribution with respect to $M_{pi^- pi^0}$.
Hattori-Itakura have recently derived the full Landau-level summation form for the photon vacuum polarization tensor in constant external magnetic fields at the one-loop level. The Landau-level summation form is essential when the photon momentum exc eeds the threshold of the pair creation of charged particles in a magnetic field stronger than the squared mass of the charged particle. The tensor has three different form factors depending on the tensor direction with respect to the external magnetic field. The renormalization is nontrivial because these form factors are expressed in terms of double or triple summation forms. We give a numerical UV subtraction method which can be applied to numerically evaluate the form factors in constant external magnetic fields. We numerically investigate the photon vacuum polarization tensor in the form of the Landau-level summation and estimate the systematic errors coming from truncation of the Landau-level summation in a parameter region realized in heavy ion collision experiments. We find that the error is practically controllable at an $O(10^{-2})$ level for electrons and muons in strong magnetic fields expected in heavy ion collisions in the experimentally feasible kinematic parameter regions.
In the two body hadronic tau decays, such as tau->to K pi (eta)nu, vector mesons play important role. Belle and Babar measured hadronic invariant mass spectrum of tau -> K pi nu decay. To compare the spectrum with theoretical prediction, we develop t he chiral Lagrangian with vector mesons in Kimura:2012nx. We compute the form factors of the hadronic tau decay taking account of the quantum corrections of Nambu Goldstone bosons. We also show how to renormalizethe divergence of the Feynman diagrams with arbitrary number of loops and determine the counterterms within one loop using background field method.In this report, we discuss the renormalization of Kimura:2012nx by considering the one loop Feynman diagrams.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا