ترغب بنشر مسار تعليمي؟ اضغط هنا

We have carried out an in-depth study of low-mass X-ray binaries (LMXBs) detected in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project observation (total exposure time 1.1 Ms). In total we found 136 candidate LMXBs in the field and 49 in globular clusters (GCs) above 2sigma detection, with 0.3--8 keV luminosity L_X ~10^36-10^39 erg/s. Other than 13 transient candidates, the sources overall have less long-term variability at higher luminosity, at least at L_X > 2x10^37 erg/s. In order to identify the nature and spectral state of our sources, we compared their collective spectral properties based on single-component models (a simple power law or a multicolor disk) with the spectral evolution seen in representative Galactic LMXBs. We found that in the L_X versus photon index Gamma_PL and L_X versus disk temperature kT_MCD plots, most of our sources fall on a narrow track in which the spectral shape hardens with increasing luminosity below L_X~7x10^37 erg/s but is relatively constant (Gamma_PL~1.5 or kT_MCD~1.5 keV) above this luminosity, similar to the spectral evolution of Galactic neutron star (NS) LMXBs in the soft state in the Chandra bandpass. Therefore we identified the track as the NS LMXB soft-state track and suggested sources with L_X<7x10^37 erg/s as atolls in the soft state and those with L_X>7x10^37 erg/s as Z sources. Ten other sources (five are transients) displayed significantly softer spectra and are probably black hole X-ray binaries in the thermal state. One of them (persistent) is in a metal-poor GC.
We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed t he XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL propto L^{-2.2pm0.4} above 5.5x10^37 erg/s to dN/dL propto L^{-1.0pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL propto L^{-1.2pm0.1} up to a break close to the Eddington limit of neutron star LMXBs (~1.7x10^38 erg/s). The break of the GC LMXB XLF is lower, at ~1.1x10^37 erg/s. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.
RBS 1032 is a supersoft ($Gammasim5$), luminous ($sim10^{43}$ erg/s) ROSAT PSPC source which has been associated with an inactive dwarf galaxy at $z=0.026$, SDSS J114726.69+494257.8. We have analyzed an XMM-Newton observation which confirms that RBS 1032 is indeed associated with the dwarf galaxy. Moreover, RBS 1032 has undergone a factor of $sim100-300$ decay since November 1990. This variability suggests that RBS 1032 may not be a steadily accreting intermediate-mass black hole, but rather an accretion flare from the tidal disruption of a star by the central black hole (which may or may not be intermediate-mass). We suggest that additional tidal disruption events may remain unidentified in archival ROSAT data, such that disruption rate estimates based upon ROSAT All-Sky Survey data may need reconsideration.
138 - Dacheng Lin 2013
We report the discovery of a new ultraluminous X-ray source (ULX) 2XMM J125048.6+410743 within the spiral galaxy M94. The source has been observed by ROSAT, Chandra, and XMM-Newton on several occasions, exhibiting as a highly variable persistent sour ce or a recurrent transient with a flux variation factor of >100, a high duty cycle (at least ~70%), and a peak luminosity of Lx ~ 2X10^{39} erg/s (0.2-10 keV, absorbed). In the brightest observation, the source is similar to typical low-luminosity ULXs, with the spectrum showing a high-energy cutoff but harder than that from a standard accretion disk. There are also sporadical short dips, accompanied by spectral softening. In a fainter observation with Lx ~ 3.6X10^{38} erg/s, the source appears softer and is probably in the thermal state seen in Galactic black-hole X-ray binaries (BHBs). In an even fainter observation (Lx ~ 9X10^{37} erg/s), the spectrum is harder again, and the source might be in the steep-powerlaw state or the hard state of BHBs. In this observation, the light curve might exhibit ~7 hr (quasi-)periodic large modulations over two cycles. The source also has a possible point-like optical counterpart from HST images. In terms of the colors and the luminosity, the counterpart is probably a G8 supergiant or a compact red globular cluster containing ~2X10^5 K dwarfs, with some possible weak UV excess that might be ascribed to accretion activity. Thus our source is a candidate stellar-mass BHB with a supergiant companion or with a dwarf companion residing in a globular cluster. Our study supports that some low-luminosity ULXs are supercritically accreting stellar-mass BHBs.
67 - Dacheng Lin 2013
Very few galactic nuclei are found to show significant X-ray quasi-periodic oscillations (QPOs). After carefully modeling the noise continuum, we find that the ~3.8 hr QPO in the ultrasoft active galactic nucleus (AGN) candidate 2XMM J123103.2+110648 was significantly detected (~5sigma) in two XMM-Newton observations in 2005, but not in the one in 2003. The QPO rms is very high and increases from ~25% in 0.2-0.5 keV to ~50% in 1-2 keV. The QPO probably corresponds to the low-frequency type in Galactic black hole X-ray binaries, considering its large rms and the probably low mass (~10^5 msun) of the black hole in the nucleus. We also fit the soft X-ray spectra from the three XMM-Newton observations and find that they can be described with either pure thermal disk emission or optically thick low-temperature Comptonization. We see no clear X-ray emission from the two Swift observations in 2013, indicating lower source fluxes than those in XMM-Newton observations.
433 - Dacheng Lin 2013
We analyze 18 sources that were found to show interesting properties of periodicity, very soft spectra and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ~1.62 hr (2XMM J165334.4-414423) and ~2.1 hr (2XMM J133135.2-315541) and are probably magnetic cataclysmic variables. The source 2XMM J123103.2+110648 is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT~0.1 keV) and exhibiting an intermittent ~3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT<0.2 keV), which might be in other galaxies with luminosities between ~10^{38}-10^{42} erg/s. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10^{37} erg/s and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M 31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3--10 keV for at least four years since it was discovered to enter an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ~10^{34} erg/s if they are in our Galaxy, thus great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.
We have analyzed three XMM-Newton observations of the central part of the unidentified TeV gamma-ray source HESS J1804-216. We focus on two X-ray sources 2XMMi J180442.0-214221 (Src 1) and 2XMMi J180432.5-214009 (Src 2), which were suggested to be th e possible X-ray counterparts to the TeV source. We discover a 2.93 hr X-ray periodicity from Src 1, with the pulse profile explained with a self-eclipsing pole in an eclipsing polar. Src 2 exhibits a strong Fe emission line (FWHM ~0.3 keV and equivalent width ~0.8 keV) and large X-ray variability on timescales of hours and is probably an intermediate polar. Thus Src 1 and Src 2 are probably two field sources not responsible for the TeV emission. The observations were contaminated by strong straylight from a nearby bright source, and we see no clear extended X-ray emission that can be attributed to the supernova remnant G8.7-0.1, a popular possible association with the TeV source. The other possible association, the pulsar wind nebula candidate PSR J1803-2137, shows little long-term variability, compared with a previous Chandra observation. Many point sources were serendipitously detected, but most of them are probably normal stars. Three new candidate compact object systems (other than Src 1, Src 2 and PSR J1803-2137) are also found. They are far away from the TeV source and are probably also magnetic cataclysmic variables, thus unlikely to be responsible for the TeV emission.
152 - Dacheng Lin 2012
Z sources are bright neutron-star X-ray binaries, accreting at around the Eddington limit. We analyze the 68 RXTE observations (270 ks) of Sco-like Z source GX 17+2 made between 1999 October 3-12, covering a complete Z track. We create and fit color- resolved spectra with a model consisting of a thermal multicolor disk, a single-temperature-blackbody boundary layer and a weak Comptonized component. We find that, similar to what was observed for XTE J1701-462 in its Sco-like Z phase, the branches of GX 17+2 can be explained by three processes operating at a constant accretion rate Mdot into the disk: increase of Comptonization up the horizontal branch, transition from a standard thin disk to a slim disk up the normal branch, and temporary fast decrease of the inner disk radius up the flaring branch. We also model the Comptonization in an empirically self-consistent way, with its seed photons tied to the thermal disk component and corrected for to recover the pre-Comptonized thermal disk emission. This allows us to show a constant Mdot along the entire Z track based on the thermal disk component. We also measure the upper kHz QPO frequency and find it to depend on the apparent inner disk radius R_in (prior to Compton scattering) approximately as frequency propto R_in^(-3/2), supporting the idenfitication of it as the Keplerian frequency at R_in. The horizontal branch oscillation is probably related to the dynamics in the inner disk as well, as both its frequency and R_in vary significantly on the horizontal branch but become relatively constant on the normal branch.
136 - Dacheng Lin 2009
The neutron-star X-ray transient XTE J1701-462 was observed for $sim$3 Ms with xte during its 2006-2007 outburst. Here we report on the discovery of three type-I X-ray bursts from XTE J1701-462. They occurred as the source was in transition from the typical Z-source behavior to the typical atoll-source behavior, at $sim10%$ of the Eddington luminosity. The first burst was detected in the Z-source flaring branch; the second in the vertex between the flaring and normal branches; and the third in the atoll-source soft state. The detection of the burst in the flaring branch cast doubts on earlier speculations that the flaring branch is due to unstable nuclear burning of accreted matter. The last two of the three bursts show photospheric radius expansion, from which we estimate the distance to the source to be 8.8 kpc with a 15% uncertainty. No significant burst oscillations in the range 30 to 4000 Hz were found during these three bursts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا