ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we propose a new approach, based on the so-called modulating functions to estimate the average velocity, the dispersion coefficient and the differentiation order in a space fractional advection dispersion equation. First, the average v elocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transferred into solving a system of algebraic equations. Then, the modulating functions method combined with Newtons method is applied to estimate all three parameters simultaneously. Numerical results are presented with noisy measurements to show the effectiveness and the robustness of the proposed method.
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivat ives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.
Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical point of view due to Lanczos cite{C. Lanczos} to this causal case, we revisit $n^{th}$ order derivative estimators originally introduced within an algebraic framework by Mboup, Fliess and Join in cite{num,num0}. Thanks to a given noise level $delta$ and a well-suitable integration length window, we show that the derivative estimator error can be $mathcal{O}(delta ^{frac{q+1}{n+1+q}})$ where $q$ is the order of truncation of the Jacobi polynomial series expansion used. This so obtained bound helps us to choose the values of our parameter estimators. We show the efficiency of our method on some examples.
In this paper, we give estimators of the frequency, amplitude and phase of a noisy sinusoidal signal with time-varying amplitude by using the algebraic parametric techniques introduced by Fliess and Sira-Ramirez. We apply a similar strategy to estima te these parameters by using modulating functions method. The convergence of the noise error part due to a large class of noises is studied to show the robustness and the stability of these methods. We also show that the estimators obtained by modulating functions method are robust to large sampling period and to non zero-mean noises.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا