ترغب بنشر مسار تعليمي؟ اضغط هنا

A theoretical framework is developed for treating the quantization of the photons in a spacetime with a longitudinal expansion. This can be used to study the production of the photons through the non-equilibrium relaxation of a disoriented chiral con densate presumably formed in the expanding hot central region in ultra-relativistic heavy-ion collisions. These photons can be a signature of the formation of disoriented chiral condensates in the direct photon measurements of heavy-ion collisions.
It is shown that, in the context of split supersymmetry, a simple model with a single complex scalar field can produce chaotic inflation and generate the observed amount of baryon asymmetry via the Affleck-Dine mechanism. While the inflaton quantum f luctuations give rise to curvature perturbation, we show that quantum fluctuations of the phase of the scalar field can produce baryonic isocurvature perturbation. Combining with constraints from WMAP data, all parameters in the model can be determined to within a narrow range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا