ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense suspensions have previously been shown to produce a range of anomalous and gravity-defying behaviors when subjected to strong vibrations in the direction of gravity. These behaviors have previously been interpreted in terms of rigid body phenom ena and shear-thickening, but here we examine discontinuous shear thickening (DST) as the cause of a negative viscosity effect, i.e. the average shear rate being opposite to the direction of the average shear stress. Using ideas from the Wyart and Cates modeling framework, we show that such a negative viscosity can be achieved in shear flows driven by oscillating stress with both square and sinusoidal wave forms. We extend this same modeling approach to study falling films in a vibrating gravitational field, where we similarly find it is possible to attain an overall flow opposite to the direction of gravity. Preliminary experimental findings are also provided in support of the modeling work.
Gravitational coupling between protoplanetary discs and planets embedded in them leads to the emergence of spiral density waves, which evolve into shocks as they propagate through the disc. We explore the performance of a semi-analytical framework fo r describing the nonlinear evolution of the global planet-driven density waves, focusing on the low planet mass regime (below the so-called thermal mass). We show that this framework accurately captures the (quasi-)self-similar evolution of the wave properties expressed in terms of properly rescaled variables, provided that certain theoretical inputs are calibrated using numerical simulations (an approximate, first principles calculation of the wave evolution based on the inviscid Burgers equation is in qualitative agreement with simulations but overpredicts wave damping at the quantitative level). We provide fitting formulae for such inputs, in particular, the strength and global shape of the planet-driven shock accounting for nonlinear effects. We use this nonlinear framework to theoretically compute vortensity production in the disc by the global spiral shock and numerically verify the accuracy of this calculation. Our results can be used for interpreting observations of spiral features in discs, kinematic signatures of embedded planets in CO line emission (kinks), and for understanding the emergence of planet-driven vortices in protoplanetary discs.
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fra ctions imply that non-ideal magneto-hydrodynamic (MHD) effects should be properly considered. To this end, we present linear analyses of the VSI in magnetized disks with Ohmic resistivity. We primarily consider toroidal magnetic fields, which are likely to dominate the field geometry in PPDs. We perform vertically global and radially local analyses to capture characteristic VSI modes with extended vertical structures. To focus on the effect of magnetism, we use a locally isothermal equation of state. We find that magnetism provides a stabilizing effect to dampen the VSI, with surface modes, rather than body modes, being the first to vanish with increasing magnetization. Subdued VSI modes can be revived by Ohmic resistivity, where sufficient magnetic diffusion overcome magnetic stabilization, and hydrodynamic results are recovered. We also briefly consider poloidal fields to account for the magnetorotational instability (MRI), which may develop towards surface layers in the outer parts of PPDs. The MRI grows efficiently at small radial wavenumbers, in contrast to the VSI. When resistivity is considered, we find the VSI dominates over the MRI for Ohmic Els{a}sser numbers $lesssim 0.09$ at plasma beta parameter $beta_Z sim 10^4$.
Secular evolution of binaries driven by an external (tidal) potential is a classic astrophysical problem. Tidal perturbations can arise due to an external point mass, as in the Lidov-Kozai (LK) theory of hierarchical triples, or due to an extended st ellar system (e.g. galaxy or globular cluster) in which the binary resides. For many applications, general-relativistic (GR) apsidal precession is important, and has been accounted for in some LK calculations. Here we generalise and extend these studies by exploring in detail the effect of GR precession on (quadrupole-level) tidal evolution of binaries orbiting in arbitrary axisymmetric potentials (which includes LK theory as a special case). We study the (doubly-averaged) orbital dynamics for arbitrary strengths of GR and binary initial conditions and uncover entirely new phase space morphologies with important implications for the binary orbital evolution. We also explore how GR precession affects secular evolution of binary orbital elements when the binary reaches high eccentricity ($eto 1$) and delineate several different dynamical regimes. Our results are applicable to a variety of astrophysical systems. In particular, they can be used to understand the high-eccentricity behaviour of (cluster) tide-driven compact object mergers -- i.e. LIGO/Virgo gravitational wave sources -- for which GR effects are crucial.
The traditional Chandrasekhar picture of the slow relaxation of stellar systems assumes that stars orbits are only modified by occasional, uncorrelated, two-body flyby encounters with other stars. However, the long-range nature of gravity means that in reality large numbers of stars can behave collectively. In stable systems this collective behaviour (i) amplifies the noisy fluctuations in the systems gravitational potential, effectively dressing the two-body (star-star) encounters, and (ii) allows the system to support large-scale density waves (a.k.a. normal modes) which decay through resonant wave-star interactions. If the relaxation of the system is dominated by effect (i) then it is described by the Balescu-Lenard (BL) kinetic theory. Meanwhile if (ii) dominates, one must describe relaxation using quasilinear (QL) theory, though in the stellar-dynamical context the full set of QL equations has never been presented. Moreover, in some systems like open clusters and galactic disks, both (i) and (ii) might be important. Here we present for the first time the equations of a unified kinetic theory of stellar systems in angle-action variables that accounts for both effects (i) and (ii) simultaneously. We derive the equations in a heuristic, physically-motivated fashion and work in the simplest possible regime by accounting only for very weakly damped waves. This unified theory is effectively a superposition of BL and QL theories, both of which are recovered in appropriate limits. The theory is a first step towards a comprehensive description of those stellar systems for which neither the QL or BL theory will suffice.
Experiments have recently been proposed testing whether quantum gravitational interactions generate entanglement between adjacent masses in position superposition states. We propose potentially less challenging experiments that test quantum gravity a gainst theories with classical space-times defined by postulating semi-classical gravity (or classical effects of similar scale) for mesoscopic systems.
Theories involving localized collapse allow the possibility that classical information could be obtained about quantum states without using POVMS and without allowing superluminal signalling. We can model this by extending quantum theory to include h ypothetical devices that read out information about the local quantum state at a given point, defined by considering only collapses in its past light cone. Like Popescu-Rohrlich boxes, these hypothetical devices would have practical and scientific implications if realisable. These include signalling through opaque media, probing the physics of distant or opaque systems without needing a reflected signal and giving detailed information about collapse dynamics without requiring direct observation of the collapsing system. These potential applications motivate systematic searches for possible signatures of these nonstandard extensions of quantum theory, and in particular for relevant gravitational effects, such as the validity of semi-classical gravity on small scales.
There has been an upsurge of interest lately in developing Wigners hypothesis that conscious observation causes collapse by exploring dynamical collapse models in which some purportedly quantifiable aspect(s) of consciousness resist superposition. Kr emnizer-Ranchin, Chalmers-McQueen and Okon-Sebastian have explored the idea that collapse may be associated with a numerical measure of consciousness. More recently, Chalmers-McQueen have argued that any single measure is inadequate because it will allow superpositions of distinct states of equal consciousness measure to persist. They suggest a satisfactory model needs to associate collapse with a set of measures quantifying aspects of consciousness, such as the Q-shapes defined by Tononi et al. in their integrated information theory (IIT) of consciousness. I argue here that Chalmers-McQueens argument against associating a single measure with collapse requires a precise symmetry between brain states associated with different experiences and thus does not apply to the only case where we have strong intuitions, namely human (or other terrestrial biological) observers. In defence of Chalmers-McQueens stance, it might be argued that idealized artificial information processing networks could display such symmetries. However, I argue that any theory (such as IIT) that postulates a map from network states to mind states should assign identical mind states to isomorphic network states (as IIT does). This suggests that, if such a map exists, no familiar components of mind states, such as viewing different colours, or experiencing pleasure or pain, are likely to be related by symmetries.
98 - B.C. Allanach 2020
We investigate a speculative short-distance force, proposed to explain discrepancies observed between measurements of certain neutral current decays of $B$ hadrons and their Standard Model predictions. The force derives from a spontaneously broken, g auged $U(1)_{B_3-L_2}$ extension to the Standard Model, where the extra quantum numbers of Standard Model fields are given by third family baryon number minus second family lepton number. The only fields beyond those of the Standard Model are three right-handed neutrinos, a gauge field associated with $U(1)_{B_3-L_2}$ and a Standard Model singlet complex scalar which breaks $U(1)_{B_3-L_2}$, a `flavon. This simple model, via interactions involving a TeV scale force-carrying $Z^prime$ vector boson, can successfully explain the neutral current $B-$anomalies whilst accommodating other empirical constraints. In an ansatz for fermion mixing, a combination of up-to-date $B-$anomaly fits, LHC direct $Z^prime$ search limits and other bounds rule out the domain 0.15 TeV$< M_{Z^prime} <$ 1.9 TeV at the 95$%$ confidence level. For more massive $Z^prime$s, the model possesses a {em flavonstrahlung} signal, where $pp$ collisions produce a $Z^prime$ and a flavon, which subsequently decays into two Higgs bosons.
98 - Chris Hamilton 2020
The unshielded nature of gravity means that stellar systems are inherently inhomogeneous. As a result, stars do not move in straight lines. This obvious fact severely complicates the kinetic theory of stellar systems because position and velocity tur n out to be poor coordinates with which to describe stellar orbits - instead, one must use angle-action variables. Moreover, the slow relaxation of star clusters and galaxies can be enhanced or suppressed by collective interactions (polarisation effects) involving many stars simultaneously. These collective effects are also present in plasmas; in that case, they are accounted for by the Balescu-Lenard (BL) equation, which is a kinetic equation in velocity space. Recently several authors have shown how to account for both inhomogeneity and collective effects in the kinetic theory of stellar systems by deriving an angle-action generalisation of the BL equation. Unfortunately their derivations are long and complicated, involving multiple coordinate transforms, contour integrals in the complex plane, and so on. On the other hand, Rostokers superposition principle allows one to pretend that a long-range interacting $N$-body system, such as a plasma or star cluster, consists merely of uncorrelated particles that are dressed by polarisation clouds. In this paper we use Rostokers principle to provide a simple, intuitive derivation of the BL equation for stellar systems which is much shorter than others in the literature. It also allows us to straightforwardly connect the BL picture of self-gravitating kinetics to the classical two-body relaxation theory of uncorrelated flybys pioneered by Chandrasekhar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا