ترغب بنشر مسار تعليمي؟ اضغط هنا

A complete understanding of Doppler shift in active region loops can help probe the basic physical mechanism involved into the heating of those loops. Here we present observations of upflows in coronal loops detected in a range of temperature tempera tures (log T=5.8 - 6.2). The loop was not discernible above these temperatures. The speed of upflow was strongest at the footpoint and decreased with height. The upflow speed at the footpoint was about 20 km/s in Fe VIII which decreased with temperature being about 13 km/s in Fe X, about 8 km/s in Fe XII and about 4 km/s in FeXIII. To the best of our knowledge this is the first observation providing evidence of upflow of plasma in coronal loop structures at these temperatures. We interpret these observations as evidence of chromospheric evaporation in quasi-static coronal loops.
I propose a new class of interpretations, {it real world interpretations}, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They g ive a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected to tend towards orthogonality as different possible quasiclassical structures emerge or as measurement-like interactions produce different classical outcomes. However, as the worlds have a precise mathematical definition, real world interpretations need no definition of quasiclassicality, measurement, or other concepts whose imprecision is problematic in other interpretational approaches. It is natural to postulate that precisely one world is chosen randomly, using the natural probability distribution, as the world realised in Nature, and that this worlds mathematical characterisation is a complete description of reality.
559 - Durgesh Tripathi 2010
Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained Emission Measure EM$(T)$ distributions in two different moss regions within the same active region. We have compared these with th eoretical transition region EMs derived for three limiting cases, namely textit{static equilibrium}, textit{strong condensation} and textit{strong evaporation} from cite{ebtel}. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from $log T[mathrm{K}]=5.15 -6.3$. Using photospheric abundances we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the textit{strong condensation} case (EM$_{con}$), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions are heated by nanoflares.
The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.
The dynamical interactions that occur in newly formed planetary systems may reflect the conditions occurring in the protoplanetary disk out of which they formed. With this in mind, we explore the attainment and maintenance of orbital resonances by mi grating planets in the terrestrial mass range. Migration time scales varying between millions of years and thousands of years are considered. In the former case, for which the migration time is comparable to the lifetime of the protoplanetary gas disk, a 2:1 resonance may be formed. In the latter, relatively rapid migration regime commensurabilities of high degree such as 8:7 or 11:10 may be formed. However, in any one large-scale migration several different commensurabilities may be formed sequentially, each being associated with significant orbital evolution. We also use a simple analytic theory to develop conditions for first order commensurabilities to be formed. These depend on the degree of the commensurability, the imposed migration and circularization rates, and the planet mass ratios. These conditions are found to be consistent with the results of our simulations.
(abriged) MRI turbulence is a leading mechanism for the generation of an efficient turbulent transport of angular momentum in an accretion disk through a turbulent viscosity effect. It is believed that the same process could also transport large-scal e magnetic fields in disks, reshaping the magnetic structures in these objects. This process, known as turbulent resistivity, has been suggested and used in several accretion-ejection models and simulations to produce jets. Still, the efficiency of MRI-driven turbulence to transport large-scale magnetic fields is largely unknown. We investigate this problem both analytically and numerically. We introduce a linear calculation of the MRI in the presence of a spatially inhomogeneous mean magnetic field. We show that, in this configuration, MRI modes lead to an efficient magnetic field transport, on the order of the angular momentum transport. We next use fully non linear simulations of MRI turbulence to compute the turbulent resistivity in several magnetic configurations. We find that the turbulent resistivity is on the order of the turbulent viscosity in all our simulations, although somewhat lower. The turbulent resistivity tensor is found to be highly anisotropic with a diffusion coefficient 3 times greater in the radial direction than in the vertical direction. These results support the possibility of driving jets from turbulent disks; the resulting jets may not be steady.
Non-local equations of motion contain an infinite number of derivatives and commonly appear in a number of string theory models. We review how these equations can be rewritten in the form of a diffusion-like equation with non-linear boundary conditio ns. Moreover, we show that this equation can be solved as an initial value problem once a set of non-trivial initial conditions that satisfy the boundary conditions is found. We find these initial conditions by looking at the linear approximation to the boundary conditions. We then numerically solve the diffusion-like equation, and hence the non-local equations, as an initial value problem for the full non-linear potential and subsequently identify the cases when inflation is attained.
838 - Burin Gumjudpai 2008
Aspects of non-linear Schr{o}dinger-type (NLS) formulation of scalar (phantom) field cosmology on slow-roll, acceleration, WKB approximation and Big Rip singularity are presented. Slow-roll parameters for the curvature and barotropic density terms ar e introduced. We reexpress all slow-roll parameters, slow-roll conditions and acceleration condition in NLS form. WKB approximation in the NLS formulation is also discussed when simplifying to linear case. Most of the Schr{o}dinger potentials in NLS formulation are very slowly-varying, hence WKB approximation is valid in the ranges. In the NLS form of Big Rip singularity, two quantities are infinity in stead of three. We also found that approaching the Big Rip, $w_{rm eff}to -1 + {2}/{3q}$, $(q<0)$ which is the same as effective phantom equation of state in the flat case.
We study the spectrum of cosmological fluctuations in the D3/D7 brane inflationary universe with particular attention to the parametric excitation of entropy modes during the reheating stage. The same tachyonic instability which renders reheating in this model very rapid leads to an exponential growth of entropy fluctuations during the preheating stage which in turn may induce a large contribution to the large-scale curvature fluctuations. We take into account the effects of long wavelength quantum fluctuations in the matter fields. As part of this work, we perform an analytical analysis of the reheating process. We find that the initial stage of preheating proceeds by the tachyonic instability channel. An upper bound on the time it takes for the energy initially stored in the inflaton field to convert into fluctuations is obtained by neglecting the local fluctuations produced during the period of tachyonic decay and analyzing the decay of the residual homogeneous field oscillations, which proceeds by parametric resonance. We show that in spite of the fact that the resonance is of narrow-band type, it is sufficiently efficient to rapidly convert most of the energy of the background fields into matter fluctuations.
There has been considerable recent interest in solving non-local equations of motion which contain an infinite number of derivatives. Here, focusing on inflation, we review how the problem can be reformulated as the question of finding solutions to a diffusion-like partial differential equation with non-linear boundary conditions. Moreover, we show that this diffusion-like equation, and hence the non-local equations, can be solved as an initial value problem once non-trivial initial data consistent with the boundary conditions is found. This is done by considering linearised equations about any field value, for which we show that obtaining solutions using the diffusion-like equation is equivalent to solving a local but infinite field cosmology. These local fields are shown to consist of at most two canonically normalized or phantom fields together with an infinite number of quintoms. We then numerically solve the diffusion-like equation for the full non-linear case for two string field theory motivated models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا