ترغب بنشر مسار تعليمي؟ اضغط هنا

147 - D.M. Bauer , M. Lettner , C. Vo 2009
We use laser light near resonant with an optical bound-to-bound transition to shift the magnetic field at which a Feshbach resonance occurs. We operate in a regime of large detuning and large laser intensity. This reduces the light-induced atom-loss rate by one order of magnitude compared to our previous experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are performed in an optical lattice and include high-resolution spectroscopy of excited molecular states, reported here. In addition, we give a detailed account of a theoretical model that describes our experimental data.
97 - D.M. Bauer , M. Lettner , C. Vo 2009
The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additio nal flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا