ترغب بنشر مسار تعليمي؟ اضغط هنا

We present HST/STIS time-series spectroscopy of the central star of the Cats Eye planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hour period reveals well defined details of large-scale structure in the fast wind, which are exploited to provide new constraints on the rotation rate of the central star. We derive characteristics of the line profile variability that support a physical origin due to co-rotating interaction regions (CIRs) that are rooted at the stellar surface. The recurrence time of the observed spectral signatures of the CIRs is used to estimate the rotation period of the central star and, adopting a radius between 0.3 and 0.6 Rsun constrains the rotational velocity to the range 54 leq v_{rot} leq 108 kms. The implications of these results for single star evolution are discussed based on models calculated here for low-mass stars. Our models predict a sub-surface convective layer in NGC 6543 which we argue to be causally connected to the occurrence of structure in the fast wind.
We present a study of the infrared properties of 4922 spectroscopically confirmed massive stars in the Large and Small Magellanic Clouds, focusing on the active OB star population. Besides OB stars, our sample includes yellow and red supergiants, Wol f-Rayet stars, Luminous Blue Variables (LBVs) and supergiant B[e] stars. We detect a distinct Be star sequence, displaced to the red, and find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We also find photometric variability among the active OB population and evidence for transitions of Be stars to B stars and vice versa. We furthermore confirm the presence of dust around all the supergiant B[e] stars in our sample, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs.
We present results of our study of the infrared properties of massive stars in the Large and Small Magellanic Clouds, which are based on the Spitzer SAGE surveys of these galaxies. We have compiled catalogs of spectroscopically confirmed massive star s in each galaxy, as well as photometric catalogs for a subset of these stars that have infrared counterparts in the SAGE database, with uniform photometry from 0.3 to 24 microns in the UBVIJHKs+IRAC+MIPS24 bands. These catalogs enable a comparative study of infrared excesses of OB stars, classical Be stars, yellow and red supergiants, Wolf-Rayet stars, Luminous Blue Variables and supergiant B[e] stars, as a function of metallicity, and provide the first roadmaps for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا