ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic correlations in the paramagnetic phase of CaFe2As2 (T_N=172 K) have been examined by means of inelastic neutron scattering from 180 K (~ 1.05 T_N) up to 300 K (~1.8 T_N). Despite the first-order nature of the magnetic ordering, strong but sh ort-range antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasi-elastic scattering centered at the wavevector Q_{AFM} of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer (E> 60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c-direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-range anisotropic spin correlations with overdamped spin dynamics.
Inelastic neutron scattering measurements of CaFe2As2 under applied hydrostatic pressure show that the antiferromagnetic spin fluctuations observed in the ambient pressure, paramagnetic, tetragonal (T) phase are strongly suppressed, if not absent, in the collapsed tetragonal (cT) phase. These results are consistent with a quenched Fe moment in the cT phase and the strong decrease in resistivity observed upon crossing the boundary from the T to cT phase. The suppression or absence of static antiferromagnetic order and dynamic spin fluctuations in the non-superconducting cT phase supports the notion of a coupling between spin fluctuations and superconductivity in the iron arsenides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا