ترغب بنشر مسار تعليمي؟ اضغط هنا

The dense cloud associated with W40, one of the nearby H II regions, has been studied in millimeter-wave molecular lines and in 1.2 mm continuum. Besides, 1280 MHz and 610 MHz interferometric observations have been done. The cloud has complex morphol ogical and kinematical structure, including a clumpy dust ring and an extended dense core. The ring is probably formed by the collect and collapse process due to the expansion of neighboring H II region. Nine dust clumps in the ring have been deconvolved. Their sizes, masses and peak hydrogen column densities are: $sim 0.02-0.11$ pc, $sim 0.4-8.1 M_{odot}$ and $sim (2.5-11)times 10^{22}$ cm$^{-2}$, respectively. Molecular lines are observed at two different velocities and have different spatial distributions implying strong chemical differentiation over the region. The CS abundance is enhanced towards the eastern dust clump 2, while the NH$_3$, N$_2$H$^+$, and H$^{13}$CO$^+$ abundances are enhanced towards the western clumps. HCN and HCO$^+$ do not correlate with the dust probably tracing the surrounding gas. Number densities derived towards selected positions are: $sim (0.3-3.2)times 10^6$ cm$^{-3}$. Two western clumps have kinetic temperatures 21 K and 16 K and are close to virial equilibrium. The eastern clumps 2 and 3 are more massive, have higher extent of turbulence and are probably more evolved than the western ones. They show asymmetric CS(2--1) line profiles due to infalling motions which is confirmed by model calculations. An interaction between ionized and neutral material is taking place in the vicinity of the eastern branch of the ring and probably trigger star formation.
We present a detailed study of McNeils nebula (V1647 Ori) in its ongoing outburst phase starting from September 2008 to March 2013. Our 124 nights of photometric observations were carried out in optical V, R, I and near-infrared J, H, K bands, and 59 nights of medium resolution spectroscopic observations were done in 5200 - 9000 Ang wavelength range. All observations were carried out with 2-m Himalayan Chandra Telescope and 2-m IUCAA Girawali Telescope. Our observations show that over last four and a half years, V1647 Ori and the region C near Herbig-Haro object, HH 22A, have been undergoing a slow dimming at a rate of ~0.04 mag/yr and ~0.05 mag/yr respectively in R-band, which is 6 times slower than the rate during similar stage of V1647 Ori in 2003 outburst. We detected change in flux distribution over the reflection nebula implying changes in circumstellar matter distribution between 2003 and 2008 outbursts. Apart from steady wind of velocity ~350 km/s we detected two episodic magnetic reconnection driven winds. Forbidden [O I] 6300 Ang and [Fe II] 7155 Ang lines were also detected implying shock regions probably from jets. We tried to explain the outburst timescales of V1647 Ori using the standard models of FUors kind of outburst and found that pure thermal instability models like Bell & Lin (1994) cannot explain the variations in timescales. In the framework of various instability models we conclude that one possible reason for sudden ending of 2003 outburst in 2005 November was due to a low density region or gap in the inner region (~ 1 AU) of the disc.
BVRIJHK photometry, Spitzer-GLIMPSE photometry and HK band spectroscopy were used to study the stellar content of IRAS 19343+2026, a (proto)star/cluster candidate, located close to the Galactic plane. The data suggest that IRAS 19343+2026 is a rich c luster associated with a massive protostar of 7.6 Msol with an age of ~ 10^5 yr. Three point sources in the vicinity of the far-infrared (FIR) peak are also found to be early B type stars. The remaining (predominantly low mass) members of the cluster are best represented by a 1 - 3 Myr pre-main-sequence (PMS) population. HK band spectra of two bright and five faint point sources in the cluster confirm that the results obtained from the photometry are good representations of their young stellar object (YSO) nature. Thus, IRAS 19343+2026 is a young cluster with at least four early B-type stars classified as young (10^4 - 10^5 yr), that are surrounded by a somewhat older (1 - 3 Myr) population of low mass YSOs. Together, these results argue for a scenario in which low mass stars form prior to massive stars in a cluster forming environment. We compute the Initial Mass Function (IMF) for this cluster using the K-band luminosity function; the slope of the IMF is shallower than predicted by the Salpeters mass function. The cluster mass, Mtot, is estimated to be in the range ~ 307 Msol (from the data completeness limit) - 585 Msol (extrapolated down to the brown dwarf limit, assuming a certain IMF).
We present the results of deep and high-resolution (FWHM ~ 0.35) JHK NIR observations with the Subaru telescope, to search for very low mass young stellar objects (YSOs) in the W3 Main star-forming region. The NIR survey covers an area of ~ 2.6 arcmi n^2 with 10-sigma limiting magnitude exceeding 20 mag in the JHK bands. The survey is sensitive enough to provide unprecedented details in W3 IRS 5 region and reveals a census of the stellar population down to objects below the hydrogen-burning limit. We construct JHK color-color (CC) and J-H/J and H-K/K color-magnitude (CM) diagrams to identify very low luminosity YSOs and to estimate their masses. Based on these CC and CM diagrams, we identified a rich population of embedded YSO candidates with infrared excesses (Class I and Class II), associated with the W3 Main region. A large number of red sources (H-K > 2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence (PMS) stars with intrinsic color excesses. Based on the comparison between theoretical evolutionary models of very low-mass PMS objects with the observed CM diagram, we find there exists a substantial substellar population in the observed region. The mass function (MF) does not show the presence of cutoff and sharp turnover around the substellar limit, at least at the hydrogen-burning limit. Furthermore, the MF slope indicates that the number ratio of young brown dwarfs and hydrogen-burning stars in the W3 Main is probably higher than those in Trapezium and IC 348. The presence of mass segregation, in the sense that relatively massive YSOs lie near the cluster center, is seen. The estimated dynamical evolution time indicates that the observed mass segregation in the W3 Main may be the imprint of the star formation process.
We present $UBVI_c$ CCD photometry of the young open cluster Stock 8 with the aim to study the basic properties and star formation scenario in this region. The radius of the cluster is found to be $sim 6^{prime}$ ($sim 3.6$ pc) and the reddening with in the cluster region varies from $E(B-V)=0.40$ to 0.60 mag. The cluster is located at a distance of $2.05 pm 0.10$ kpc. Using H$alpha$ slitless spectroscopy and 2MASS NIR data we identified H$alpha$ emission and NIR excess young stellar objects (YSOs), respectively. The colour-magnitude diagrams of these YSOs reveal that majority of these objects have ages between 1 to 5 Myr indicating a non-coeval star formation in the cluster. Massive stars in the cluster region reveal an average age of $le$ 2 Myr. In the cluster region ($r le 6^prime$) the slope of the mass function (MF), $Gamma$, in the mass range $sim 1.0 le M/M_odot < 13.4$ can be represented by a power law having a slope of $-1.38pm0.12$, which agrees well with Salpeter value (-1.35). In the mass range $0.3 le M/M_odot < 1.0$, the MF is also found to follow a power law with a shallower slope of $Gamma = -0.58pm 0.23$ indicating a break in the slope of the IMF at $sim 1 M_odot$. The slope of the $K$-band luminosity function for the cluster ($r le 6^prime$) is found to be $0.31pm0.02$, which is smaller than the average value ($sim$ 0.4) obtained for embedded star clusters. A significant number of YSOs are distributed along a Nebulous Stream towards the east side of the cluster. A small cluster is embedded in the Nebulous Stream. The YSOs lying in the Nebulous Stream and in the embedded cluster are found to be younger than the stars in the cluster Stock 8. It appears that star formation activity in the Nebulous Stream and embedded cluster may be independent from that of Stock 8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا