ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a Stokes I, Q and U survey at 189 MHz with the Murchison Widefield Array 32-element prototype covering 2400 square degrees. The survey has a 15.6 arcmin angular resolution and achieves a noise level of 15 mJy/beam. We demonstrate a novel i nterferometric data analysis that involves calibration of drift scan data, integration through the co-addition of warped snapshot images and deconvolution of the point spread function through forward modeling. We present a point source catalogue down to a flux limit of 4 Jy. We detect polarization from only one of the sources, PMN J0351-2744, at a level of 1.8 pm 0.4%, whereas the remaining sources have a polarization fraction below 2%. Compared to a reported average value of 7% at 1.4 GHz, the polarization fraction of compact sources significantly decreases at low frequencies. We find a wealth of diffuse polarized emission across a large area of the survey with a maximum peak of ~13 K, primarily with positive rotation measure values smaller than +10 rad/m^2. The small values observed indicate that the emission is likely to have a local origin (closer than a few hundred parsecs). There is a large sky area at 2^h30^m where the diffuse polarized emission rms is fainter than 1 K. Within this area of low Galactic polarization we characterize the foreground properties in a cold sky patch at $(alpha,delta) = (4^h,-27^circ.6)$ in terms of three dimensional power spectra
We present a method for subtracting point sources from interferometric radio images via forward modeling of the instrument response and involving an algebraic nonlinear minimization. The method is applied to simulated maps of the Murchison Wide-field Array but is generally useful in cases where only image data are available. After source subtraction, the residual maps have no statistical difference to the expected thermal noise distribution at all angular scales, indicating high effectiveness in the subtraction. Simulations indicate that the errors in recovering the source parameters decrease with increasing signal-to-noise ratio, which is consistent with the theoretical measurement errors. In applying the technique to simulated snapshot observations with the Murchison Wide-field Array, we found that all 101 sources present in the simulation were recovered with an average position error of 10 arcsec and an average flux density error of 0.15%. This led to a dynamic range increase of approximately 3 orders of magnitude. Since all the sources were deconvolved jointly, the subtraction was not limited by source sidelobes but by thermal noise. This technique is a promising deconvolution method for upcoming radio arrays with a huge number of elements, and a candidate for the difficult task of subtracting foreground sources from observations of the 21 cm neutral Hydrogen signal from the epoch of reionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا