ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the self-similarity approach applied to study the hadron production in p-p and A-A collisions. This approach allows us to describe rather well the ratio of the proton to anti-proton yields in A-A collisions as a function of the energy at a wide range from a few GeV to a few TeV. We suggest a modification of this approach to describe rather well the inclusive spectra of hadrons produced in $pp$ collisions at different initial energies from the AGS to LHC.
Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n$_{th} + ^{10}$B $rightarrow ^{7}$Li $+ (gamma) + alpha$ were studied in nuclear tac k emulsions enriched in boron. Nuclear track emulsions were also irradiated with $^{86}$Kr$^{+17}$ and $^{132}$Xe$^{+26}$ of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsions made it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nuclear-diffraction interaction mechanism.
Nuclear track emulsion is exposed to a beam of radioactive $^8$He nuclei with an energy of 60 MeV and enrichment of about 80% at the ACCULINNA separator. Measurements of 278 decays of the $^8$He nuclei stopped in the emulsion allow the potential of t he $alpha$ spectrometry to be estimated and the thermal drift of $^8$He atoms in matter to be observed for the first time.
The dissociation features in nuclear track emulsion of $^9$Be, $^{9,10}$C, and $^{12}$N nuclei of 1.2 A GeV energy are presented. The data presented for the nucleus $^9$Be can be considered as evidence that there is a core in its structure in the for m of 0$^+$ and 2$^+$ states of the $^8$Be nucleus having roughly equal weights. Events of coherent dissociation $^9$C$rightarrow 3^3$He associated with the rearrangement of the nucleons outside the $alpha$-clustering are identified. A pattern of the charge fragment topology in the dissociation of $^{10}$C and $^{12}$N nuclei is obtained for the first time. Contribution of the unbound nucleus decays to the cascade process $^{10}$C$rightarrow ^9$B$rightarrow ^8$Be is identified.
The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions - nuclear white stars. A complete pattern of therelativistic dissociation of a $^8$B nucleus with targ et fragment accompaniment is presented. Relativistic dissociation $^{9}$Be$to2alpha$ is explored using significant statistics and a relative contribution of $^{8}$Be decays from 0$^+$ and 2$^+$ states is established. Target fragment accompaniments are shown for relativistic fragmentation $^{14}$N$to$3He+H and $^{22}$Ne$to$5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to break-ups on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا