ترغب بنشر مسار تعليمي؟ اضغط هنا

To probe the distribution and physical characteristics of interstellar gas at temperatures T ~ 3e5 K in the disk of the Milky Way, we have used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe absorption lines of OVI toward 148 early-type stars situated at distances 1 kpc. After subtracting off a mild excess of OVI arising from the Local Bubble, combining our new results with earlier surveys of OVI, and eliminating stars that show conspicuous localized X-ray emission, we find an average OVI mid-plane density n_0 = 1.3e-8 cm^-3. The density decreases away from the plane of the Galaxy in a way that is consistent with an exponential scale height of 3.2 kpc at negative latitudes or 4.6 kpc at positive latitudes. Average volume densities of OVI along different sight lines exhibit a dispersion of about 0.26 dex, irrespective of the distances to the target stars. This indicates that OVI does not arise in randomly situated clouds of a fixed size and density, but instead is distributed in regions that have a very broad range of column densities, with the more strongly absorbing clouds having a lower space density. Line widths and centroid velocities are much larger than those expected from differential Galactic rotation, but they are nevertheless correlated with distance and N(OVI), which reinforces our picture of a diverse population of hot plasma regions that are ubiquitous over the entire Galactic disk. The velocity extremes of the OVI profiles show a loose correlation with those of very strong lines of less ionized species, supporting a picture of a turbulent, multiphase medium churned by shock-heated gas from multiple supernova explosions.
106 - B. L. Frye 2007
We present results of the HST Advanced Camera for Surveys spectroscopic ground-based redshift survey in the field of A1689. We measure 98 redshifts, increasing the number of spectroscopically confirmed objects by sixfold. We present two spectra from this catalog of the Sextet Arcs, images which arise from a strongly-lensed Lyman Break Galaxy (LBG) at a redshift of z=3.038. Gravitational lensing by the cluster magnifies its flux by a factor of ~16 and produces six separate images with a total r-band magnitude of r_625=21.7. The two spectra, each of which represents emission from different regions of the LBG, show H I and interstellar metal absorption lines at the systemic redshift. Significant variations are seen in Ly-alpha profile across a single galaxy, ranging from strong absorption to a combination of emission plus absorption. A spectrum of a third image close to the brightest arc shows Ly-alpha emission at the same redshift as the LBG, arising from either another spatially distinct region of the galaxy, or from a companion galaxy close to the LBG. Taken as a group, the Ly-alpha equivalent width in these three spectra decreases with increasing equivalent width of the strongest interstellar absorption lines. We discuss how these variations can be used to understand the physical conditions in the LBG. Intrinsically, this LBG is faint, ~0.1L*, and forming stars at a modest rate, ~4 solar masses per year. We also detect absorption line systems toward the Sextet Arcs at z=2.873 and z=2.534. The latter system is seen across two of our spectra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا