ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effect of a finite proximity superconducting (SC) coherence length in SN and SNS junctions consisting of a semiconducting topological insulating wire whose ends are connected to either one or two s-wave superconductors. We find that such systems behave exactly as SN and SNS junctions made from a single wire for which some regions are sitting on top of superconductors, the size of the topological SC region being determined by the SC coherence length. We also analyze the effect of a non-perfect transmission at the NS interface on the spatial extension of the Majorana fermions. Moreover, we study the effects of continuous phase gradients in both an open and closed (ring) SNS junction. We find that such phase gradients play an important role in the spatial localization of the Majorana fermions.
We study one-dimensional topological SN and SNS long junctions obtained by placing a topological insulating nanowire in the proximity of either one or two SC finite-size leads. Using the Majorana Polarization order parameter (MP) introduced in Phys. Rev. Lett. 108, 096802 (2012)(arxiv:1109.5697) we find that the extended Andreev bound states (ABS) of the normal part of the wire acquire a finite MP: for a finite-size SN junction the ABS spectrum exhibits a zero-energy extended state which carries a full Majorana fermion, while the ABS of long SNS junctions with phase difference $pi$ transform into two zero-energy states carrying two Majorana fermions with the same MP. Given their extended character inside the whole normal link, and not only close to an interface, these Majorana-Andreev states can be directly detected in tunneling spectroscopy experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا