ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust emission at sub-millimetre wavelengths allows us to trace the early phases of star formation in the Universe. In order to understand the physical processes involved in this mode of star formation, it is essential to gain knowledge about the dark matter structures - most importantly their masses - that sub-millimetre galaxies live in. Here we use the magnification effect of gravitational lensing to determine the average mass and dust content of sub-millimetre galaxies with 250mu flux densities of S_250>15mJy selected using data from the Herschel Multi-tiered Extragalactic Survey. The positions of hundreds of sub-millimetre foreground lenses are cross-correlated with the positions of background Lyman-break galaxies at z~3-5 selected using optical data from the Canada-France Hawaii Telescope Legacy Survey. We detect a cross-correlation signal at the 7-sigma level over a sky area of one square degree, with ~80% of this signal being due to magnification, whereas the remaining ~20% comes from dust extinction. Adopting some simple assumptions for the dark matter and dust profiles and the redshift distribution enables us to estimate the average mass of the halos hosting the sub-millimetre galaxies to be log(M_200/M_sun)=13.17+0.05-0.08(stat.) and their average dust mass fraction (at radii of >10kpc) to be M_dust/M_200~6x10^-5. This supports the picture that sub-millimetre galaxies are dusty, forming stars at a high rate, reside in massive group-sized halos, and are a crucial phase in the assembly and evolution of structure in the Universe.
66 - E. L. Chapin , A. Pope , D. Scott 2009
We present results from a multi-wavelength study of 29 sources (false detection probabilities <5%) from a survey of the Great Observatories Origins Deep Survey-North field at 1.1mm using the AzTEC camera. Comparing with existing 850um SCUBA studies i n the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1-sigma depth of ~1mJy. Searching deep 1.4GHz VLA, and Spitzer 3--24um catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z=2.7, somewhat higher than z=2.0 for 850um-selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z=1.1460. We measure the 850um to 1.1mm colour of our sources and do not find evidence for `850um dropouts, which can be explained by the low-SNR of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices $beta$ for the sample, concluding that existing estimates T~30K and $beta$~1.75 are consistent with these new data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا