ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - X. Liang , D. S. Deng , J.-C. Nave 2010
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of $N$ fluids with arbitrary viscosities, thicknesses, densities, and surface tension s in both the Stokes regime and for the full Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional Stokes-flow simulations. Many $N > 3$ cases remain to be explored, and as a first step we discuss two illustrative $N to infty$ cases, an alternating-layer structure and a geometry with a continuously varying viscosity.
Recent experimental observations have demonstrated interesting instability phenomenon during thermal drawing of microstructured glass/polymer fibers, and these observations motivate us to examine surface-tension-driven instabilities in concentric cyl indrical shells of viscous fluids. In this paper, we focus on a single instability mechanism: classical capillary instabilities in the form of radial fluctuations, solving the full Navier--Stokes equations numerically. In equal-viscosity cases where an analytical linear theory is available, we compare to the full numerical solution and delineate the regime in which the linear theory is valid. We also consider unequal-viscosity situations (similar to experiments) in which there is no published linear theory, and explain the numerical results with a simple asymptotic analysis. These results are then applied to experimental thermal drawing systems. We show that the observed instabilities are consistent with radial-fluctuation analysis, but cannot be predicted by radial fluctuations alone---an additional mechanism is required. We show how radial fluctuations alone, however, can be used to analyze various candidate material systems for thermal drawing, clearly ruling out some possibilities while suggesting others that have not yet been considered in experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا