ترغب بنشر مسار تعليمي؟ اضغط هنا

We present follow-up observations with the Sunyaev-Zeldovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+001 6. ACT-CL J0022-0036 is a newly-discovered, massive (10^15 Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACTs frequency, we estimate that point sources could be contaminating the SZE decrement at the <= 20% level for some fraction of clusters.
We present 10 to 18 images of four massive clusters of galaxies through the Sunyaev-Zeldovich Effect (SZE). These measurements, made at 90~GHz with the MUSTANG receiver on the Green Bank Telescope (GBT), reveal pressure sub-structure to the intra-clu ster medium (ICM) in three of the four systems. We identify the likely presence of a previously unknown weak shock-front in MACS0744+3927. By fitting the Rankine-Hugoniot density jump conditions in a complementary SZE/X-ray analysis, we infer a Mach number of M = 1.2^{+0.2}_{-0.2} and a shock-velocity of 1827^{+267}_{-195}~km/s. In RXJ1347-1145, we present a new reduction of previously reported data and confirm the presence of a south-east SZE enhancement with a significance of 13.9 sigma when smoothed to 18 resolution. This too is likely caused by shock-heated gas produced in a recent merger. In our highest redshift system, CL1226+3332, we detect sub-structure at a peak significance of 4.6 sigma in the form of a ridge oriented orthogonally to the vector connecting the main mass peak and a sub-clump revealed by weak lensing. We also conclude that the gas distribution is elongated in a south-west direction, consistent with a previously proposed merger scenario. The SZE image of the cool core cluster Abell 1835 is, in contrast, consistent with azimuthally symmetric signal only. This pilot study demonstrates the potential of high-resolution SZE images to complement X-ray data and probe the dynamics of galaxy clusters
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal distribution. In order to test the lognormal nature of the ICM directly against X-ray obser vations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the density fluctuations and the X-ray surface brightness. We analyze chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of two from their X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three dimensional inhomogeneity in galaxy clusters.
Context: Rapid rotation modifies the structure of the frequency spectrum of pulsating stars, thus making mode identification difficult. Aims: We look for new forms of organisation for the frequency spectrum that can provide a basis for mode identif ication at high rotation rates. Methods: Acoustic modes in uniformly rotating polytropic models of stars are computed using a numerical code that fully takes the effects of rotation (centrifugal distortion and Coriolis acceleration) into account. All low-degree modes, l=0 to 3, with radial orders n=1-10 and 21-25 for N=3 polytropic models and n=1-10 for N=1.5 polytropic models are followed from a zero rotation rate up to 59 % of the break-up velocity. Results: We find an empirical formula that gives a good description of the high-frequency range of the computed acoustic spectrum for high rotation rates. Differences between this formula and complete eigenmode calculations are shown to be substantially smaller than those obtained with a third order perturbative method valid at low rotation rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا