ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, a new procedure to quantize the $SU(N)$ Yang-Mills theory in the nonperturbative regime was proposed. The idea is to divide the configuration space ${A_mu}$ into sectors labeled by different topological degrees of freedom and fix the gauge separately on each one of them. As Singers theorem on gauge copies only refers to gauge fixing conditions that are global in ${A_mu}$, this construction might avoid the Gribov problem. In this work, we present a proof of the renormalizability in the center-vortex sectors, thus establishing the calculability of the Yang-Mills center-vortex ensemble.
178 - D. R. Junior , L. E. Oxman , 2021
In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang-Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modelling in the continuum the ensembl e components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the nonoriented center-vortex component and non-Abelian degrees when modelling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.
Recently, based on a new procedure to quantize the theory in the continuum, it was argued that Singers theorem points towards the existence of a Yang-Mills ensemble. In the new approach, the gauge fields are mapped into an auxiliary field space used to separately fix the gauge on different sectors labeled by center vortices. In this work, we study this procedure in more detail. We provide examples of configurations belonging to sectors labeled by center vortices and discuss the existence of nonabelian degrees of freedom. Then, we discuss the importance of the mapping injectivity, and show that this property holds infinitesimally for typical configurations of the vortex-free sector and for the simplest example in the one-vortex sector. Finally, we show that these configurations are free from Gribov copies.
We investigate an effective flavor-symmetric Yang-Mills-Higgs model with $N^2-1$ adjoint scalar fields. We find a set of BPS equations that provide vortex solutions and calculate their energies for arbitrary representations. We show that, for a given N-ality $k$, the energy of the corresponding antisymmetric representation is the lowest. This completes the proof that this model is able to reproduce a Casimir law for the string tension at asymptotic distances.
In this work, we analyzed a recent proposal to detect $SU(N)$ continuum Yang-Mills sectors labeled by center vortices, inspired by Laplacian-type center gauges in the lattice. Initially, after the introduction of appropriate external sources, we obta ined a rich set of sector-dependent Ward identities, which can be used to control the form of the divergences. Next, we were able to show the all-order multiplicative renormalizability of the center-vortex free sector. These are important steps towards the establishment of a first principles, well-defined, and calculable Yang-Mills ensemble.
In this work, we propose a $3D$ ensemble measure for center-vortex worldlines and chains equipped with non-Abelian degrees of freedom. We derive an effective field description for the center-element average where the vortices get represented by $N$ f lavors of effective Higgs fields transforming in the fundamental representation. This field content is required to accommodate fusion rules where $N$ vortices can be created out of the vacuum. The inclusion of the chain sector, formed by center-vortex worldlines attached to pointlike defects, leads to a discrete set of $Z(N)$ vacua. This type of SSB pattern supports the formation of a stable domain wall between quarks, thus accommodating not only a linear potential but also the Luscher term. Moreover, after a detailed analysis of the associated field equations, the asymptotic string tension turns out to scale with the quadratic Casimir of the antisymmetric quark representation. These behaviors reproduce those derived from Monte Carlo simulations in $SU(N)$ $3D$ Yang-Mills theory, which lacked understanding in the framework of confinement as due to percolating magnetic defects.
We study quantum effects induced by a point-like object that imposes Dirichlet boundary conditions along its world-line, on a real scalar field $varphi$ in 1, 2 and 3 spatial dimensions. The boundary conditions result from the strong coupling limit o f a term quadratic in the field and localized on the particles trajectory. We discuss the renormalization issues that appear and evaluate the effective action. Special attention is paid to the case of 2 spatial dimensions where the coupling constant is adimensional.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا