ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: The dwarf planet (1) Ceres - next target of the NASA Dawn mission - is the largest body in the asteroid main belt; although several observations of this body have been performed so far, the presence of surface water ice is still questioned. Aims: Our goal is to better understand the surface composition of Ceres, and to constrain the presence of exposed water ice. Methods: We acquired new visible and near-infrared spectra at the Telescopio Nazionale Galileo (TNG, La Palma, Spain), and reanalyzed literature spectra in the 3-$mu$m region. Results: We obtained the first rotationally-resolved spectroscopic observations of Ceres at visible wavelengths. Visible spectra taken one month apart at almost the same planetocentric coordinates show a significant slope variation (up to 3 %/10$^3AA$). A faint absorption centered at 0.67 $mu$m, possibly due to aqueous alteration, is detected in a subset of our spectra. The various explanations in the literature for the 3.06-$mu$m feature can be interpreted as due to a variable amount of surface water ice at different epochs. Conclusions: The remarkable short-term temporal variability of the visible spectral slope, and the changing shape of the 3.06-$mu$m band, can be hints of different amounts of water ice exposed on the surface of Ceres. This would be in agreement with the recent detection by the Herschel Space Observatory of localized and transient sources of water vapour over this dwarf planet.
88 - F. De Luise , D. Perna , E. Dotto 2007
In this paper we present the observational campaign carried out at ESO NTT and VLT in April and May 2006 to investigate the nature and the structure of the Near Earth Object (144898) 2004 VD17. In spite of a great quantity of dynamical information, a ccording to which it will have a close approach with the Earth in the next century, the physical properties of this asteroid are largely unknown. We performed visible and near--infrared photometry and spectroscopy, as well as polarimetric observations. Polarimetric and spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A good agreement was also found with the spectrum of the aubrite meteorite Mayo Belwa. On the basis of the polarimetric albedo (p_v=0.45) and of photometric data, we estimated a diameter of about 320 m and a rotational period of about 2 hours. The analysis of the results obtained by our complete survey have shown that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup limits for fast rotator asteroids, as defined by Pravec and Harris (2000). These results suggest that a more robust structure must be expected, as a fractured monolith or a rubble pile in a strength regime (Holsapple 2002).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا