ترغب بنشر مسار تعليمي؟ اضغط هنا

A number of recent experiments indicate that the iron-chalcogenide FeSe provides the long-sought possibility to study bulk superconductivity in the cross-over regime between the weakly coupled Bardeen--Cooper--Schrieffer (BCS) pairing and the strongl y coupled Bose--Einstein condensation (BEC). We report on $^{77}$Se nuclear magnetic resonance experiments of FeSe, focused on the superconducting phase for strong magnetic fields applied along the $c$ axis, where a distinct state with large spin polarization was reported. We determine this high-field state as bulk superconducting with high spatial homogeneity of the low-energy spin fluctuations. Further, we find that the static spin susceptibility becomes unusually small at temperatures approaching the superconducting state, despite the presence of pronounced spin fluctuations. Taken together, our results clearly indicate that FeSe indeed features an unusual field-induced superconducting state of a highly spin-polarized Fermi liquid in the BCS-BEC crossover regime.
We present a detailed $^{31}$P nuclear magnetic resonance (NMR) study of the molecular rotation in the compound [Cu(pz)$_{2}$(2-HOpy)$_{2}$](PF$_{6}$)$_{2}$, where pz = C$_4$H$_4$N$_2$ and 2-HOpy = C$_5$H$_4$NHO. Here, a freezing of the PF$_6$ rotati on modes is revealed by several steplike increases of the temperature-dependent second spectral moment, with accompanying broad peaks of the longitudinal and transverse nuclear spin-relaxation rates. An analysis based on the Bloembergen-Purcell-Pound (BPP) theory quantifies the related activation energies as $E_{a}/k_{B}$ = 250 and 1400 K. Further, the anisotropy of the second spectral moment of the $^{31}$P absorption line was calculated for the rigid lattice, as well as in the presence of several sets of PF$_6$ reorientation modes, and is in excellent agreement with the experimental data. Whereas the anisotropy of the frequency shift and enhancement of nuclear spin-relaxation rates is driven by the molecular rotation with respect to the dipole fields stemming from the Cu ions, the second spectral moment is determined by the intramolecular interaction of nuclear $^{19}$F and $^{31}$P moments in the presence of the distinct rotation modes.
86 - D. Opherden 2020
We report on a comprehensive characterization of the newly synthesized Cu$^{2+}$-based molecular magnet [Cu(pz)$_2$(2-HOpy)$_2$](PF$_6$)$_2$ (CuPOF), where pz = C$_4$H$_4$N$_2$ and 2-HOpy = C$_5$H$_4$NHO. From a comparison of theoretical modeling to results of bulk magnetometry, specific heat, $mu^+$SR, ESR, and NMR spectroscopy, this material is determined as an excellent realization of the 2D square-lattice $S=1/2$ antiferromagnetic Heisenberg model with a moderate intraplane nearest-neighbor exchange coupling of $J/k_mathrm{B} = 6.80(5)$ K, and an extremely small interlayer interaction of about 1 mK. At zero field, the bulk magnetometry reveals a temperature-driven crossover of spin correlations from isotropic to $XY$ type, caused by the presence of a weak intrinsic easy-plane anisotropy. A transition to long-range order, driven by the low-temperature $XY$ anisotropy under the influence of the interlayer coupling, occurs at $T_mathrm{N} = 1.38(2)$ K, as revealed by $mu^+$SR. In applied magnetic fields, our $^1$H-NMR data reveal a strong increase of the magnetic anisotropy, manifested by a pronounced enhancement of the transition temperature to commensurate long-range order at $T_mathrm{N} =2.8$ K and 7 T.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا