ترغب بنشر مسار تعليمي؟ اضغط هنا

CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field $H_{eb}$ depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interface s. By combining the two bilayer structures into symmetric CoFe/FeMn($t_mathrm{FeMn}$)/CoFe trilayers, $H_{eb}^t$ and $H_{eb}^b$ of the top and bottom CoFe layers, respectively, are both enhanced. Reducing $t_mathrm{FeMn}$ of the trilayers also results in enhancements of both $H_{eb}^b$ and $H_{eb}^t$. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order.
Magnetic entropy and adiabatic temperature changes in and above the room-temperature region has been measured for La0.7Sr0.3Mn1-xMxO3 (M = Al, Ti) by means of magnetization and heat capacity measurements in magnetic fields up to 6 T. The magnetocalor ic effect becomes largest at the ferromagnetic ordering temperature Tc that is tuned to ~300 K by the substitution of Al or Ti for Mn. While the substitution of Al for Mn drastically reduces the entropy change, it extends considerably the working temperature span and improves the relative cooling power. The magnetocaloric effect seems to be only lightly affected by Ti substitution. Although manganites have been considered potential for magnetic refrigerants, the magnetocaloric effect in these materials is limited due to the existence of short-range ferromagnetic correlations above Tc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا