ترغب بنشر مسار تعليمي؟ اضغط هنا

The capacity of a quantum gate to produce entangled states on a bipartite system is quantified in terms of the entangling power. This quantity is defined as the average of the linear entropy of entanglement of the states produced after applying a qua ntum gate over the whole set of separable states. Here we focus on symmetric two-qubit quantum gates, acting on the symmetric two-qubit space, and calculate the entangling power in terms of the appropriate local-invariant. A geometric description of the local equivalence classes of gates is given in terms of the $mathfrak{su}(3)$ Lie algebra root vectors. These vectors define a primitive cell with hexagonal symmetry on a plane, and through the Weyl group the minimum area on the plane containing the whole set of locally equivalent quantum gates is identified. We give conditions to determine when a given quantum gate produces maximally entangled states from separable ones (perfect entanglers). We found that these gates correspond to one fourth of the whole set of locally-distinct quantum gates. The theory developed here is applicable to three-level systems in general, where the non-locality of a quantum gate is related to its capacity to perform non-rigid transformations on the Majorana constellation of a state. The results are illustrated by an anisotropic Heisenberg model, the Lipkin-Meshkov-Glick model, and two coupled quantized oscillators with cross-Kerr interaction.
The generalization of the geometric phase to the realm of mixed states is known as Uhlmann phase. Recently, applications of this concept to the field of topological insulators have been made and an experimental observation of a characteristic critica l temperature at which the topological Uhlmann phase disappears has also been reported. Surprisingly, to our knowledge, the Uhlmann phase of such a paradigmatic system as the spin-$j$ particle in presence of a slowly rotating magnetic field has not been reported to date. Here we study the case of such a system in a thermal ensemble. We find that the Uhlmann phase is given by the argument of a complex valued second kind Chebyshev polynomial of order $2j$. Correspondingly, the Uhlmann phase displays $2j$ singularities, occurying at the roots of such polynomials which define critical temperatures at which the system undergoes topological order transitions. Appealing to the argument principle of complex analysis each topological order is characterized by a winding number, which happen to be $2j$ for the ground state and decrease by unity each time increasing temperature passes through a critical value. We hope this study encourages experimental verification of this phenomenon of thermal control of topological properties, as has already been done for the spin-$1/2$ particle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا