ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the magnetic excitations of itinerant helimagnets by applying time-resolved optical spectroscopy to Fe0.8Co0.2Si. Optically excited oscillations of the magnetization in the helical state are found to disperse to lower frequency as the applie d magnetic field is increased; the fingerprint of collective modes unique to helimagnets, known as helimagnons. The use of time-resolved spectroscopy allows us to address the fundamental magnetic relaxation processes by directly measuring the Gilbert damping, revealing the versatility of spin dynamics in chiral magnets. (*These authors contributed equally to this work)
93 - D. Meier , H. Ryll , K. Kiefer 2012
The complex interplay between the 3d and 4f moments in hexagonal ErMnO3 is investigated by magnetization, optical second harmonic generation, and neutron-diffraction measurements. We revise the phase diagram and provide a microscopic model for the em ergent spin structures with a special focus on the intermediary phase transitions. Our measurements reveal that the 3d exchange between Mn^{3+} ions dominates the magnetic symmetry at 10 K < T < T_N with Mn^3+ order according to the Gamma_4 representation triggering 4f ordering according to the same representation on the Er^{3+}(4b) site. Below 10 K the magnetic order is governed by 4f exchange interactions of Er^{3+} ions on the 2a site. The magnetic Er^{3+}(2a) order according to the representation Gamma_2 induces a magnetic reorientation (Gamma_4 --> Gamma_2) at the Er^{3+}(4b) and the Mn^{3+} sites. Our findings highlight the fundamentally different roles the Mn^{3+}, R^{3+}(2a), and R^{3+}(4b) magnetism play in establishing the magnetic phase diagram of the hexagonal RMnO3 system.
47 - D. Meier , N. Leo , T. Jungk 2010
Translation domains differing in the phase but not in the orientation of the corresponding order parameter are resolved in two types of multiferroics. Hexagonal (h-) YMnO$_3$ is a split-order-parameter multiferroic in which commensurate ferroelectric translation domains are resolved by piezoresponse force microscopy whereas MnWO$_4$ is a joint-order-parameter multiferroic in which incommensurate magnetic translation domains are observed by optical second harmonic generation. The pronounced manifestation of the generally rather hidden translation domains in these multiferroics and the associated drastic reduction of symmetry emphasize that the presence of translation domains must not be neglected when discussing the physical properties and functionalities of multiferroics.
111 - D. Meier 2009
An investigation of the spatially resolved distribution of domains in the multiferroic phase of MnWO$_4$ reveals that characteristic features of magnetic and ferroelectric domains are inseparably entangled. Consequently, the concept of multiferroic h ybrid domains is introduced for compounds in which ferroelectricity is induced by magnetic order. The three-dimensional structure of the domains is resolved. Annealing cycles reveal a topological memory effect that goes beyond previously reported memory effects and allows one to reconstruct the entire multiferroic multidomain structure subsequent to quenching it.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا