ترغب بنشر مسار تعليمي؟ اضغط هنا

We used a combination of Hubble Space Telescope and ground based data to probe the dynamical state of the low mass Galactic globular cluster NGC 6101. We have re-derived the structural parameters of the cluster by using star counts and we find that i t is about three times more extended than thought before. By using three different indicators, namely the radial distribution of Blue Straggler Stars, that of Main Sequence binaries and the luminosity (mass) function, we demonstrated that NGC 6101 shows no evidence of mass segregation, even in the innermost regions. Indeed, both the BSS and the binary radial distributions fully resemble that of any other cluster population. In addition the slope of the luminosity (mass) functions does not change with the distance, as expected for non relaxed stellar systems. NGC 6101 is one of the few globulars where the absence of mass segregation has been observed so far. This result provides additional support to the use of the dynamical clock calibrated on the radial distribution of the Blue Stragglers as a powerful indicator of the cluster dynamical age.
We present the first evidence of multiple populations in the Galactic globular cluster NGC 6362. We used optical and near-UV Hubble Space Telescope and ground based photometry, finding that both the sub giant and red giant branches are split in two p arallel sequences in all color magnitude diagrams where the F336W filter (or U band) is used. This cluster is one of the least massive globulars (M_tot~5x10^4 M_sun) where multiple populations have been detected so far. Even more interestingly and at odds with any previous finding, we observe that the two identified populations share the same radial distribution all over the cluster extension. NGC 6362 is the first system where stars from different populations are found to be completely spatially mixed. Based on N-body and hydrodynamical simulations of multiple stellar generations, we argue that, to reproduce these findings, NGC 6362 should have lost up to the 80% of its original mass
We used high-quality images acquired with the WFC3 on board the HST to probe the blue straggler star (BSS) population of the Galactic globular cluster NGC 362. We have found two distinct sequences of BSS: this is the second case, after M 30, where su ch a feature has been observed. Indeed the BSS location, their extension in magnitude and color and their radial distribution within the cluster nicely resemble those observed in M 30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass transfer binaries, the blue one by collisions. The discovery of four new W UMa stars, three of which lying along the red-BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power-law (alpha -0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362: in fact, together with M 30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the dynamical clock classification proposed by Ferraro et al. (2012). The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا