ترغب بنشر مسار تعليمي؟ اضغط هنا

296 - A. Patruno 2015
The accreting millisecond X-ray pulsar SAX J1808.4--3658 shows peculiar low luminosity states known as reflares after the end of the main outburst. During this phase the X-ray luminosity of the source varies by up to three orders of magnitude in less than 1-2 days. The lowest X-ray luminosity observed reaches a value of ~1e32 erg/s, only a factor of a few brighter than its typical quiescent level. We investigate the 2008 and 2005 reflaring state of SAX J1808.4-3658 to determine whether there is any evidence for a change in the accretion flow with respect to the main outburst. We perform a multiwavelength photometric and spectral study of the 2005 and 2008 reflares with data collected during an observational campaign covering the near-infrared, optical, ultra-violet and X-ray band. We find that the NIR/optical/UV emission, expected to some from the outer accretion disk shows variations in luminosity which are 1--2 orders of magnitude shallower than in X-rays. The X-ray spectral state observed during the reflares does not change substantially with X-ray luminosity indicating a rather stable configuration of the accretion flow. We investigate the most likely configuration of the innermost regions of the accretion flow and we infer an accretion disk truncated at or near the co-rotation radius. We interpret these findings as due to either a strong outflow (due to a propeller effect) or a trapped disk (with limited/no outflow) in the inner regions of the accretion flow.
254 - D. M. Russell 2010
[abridged] The black hole X-ray binary XTE J1550-564 was monitored extensively at X-ray, optical and infrared wavelengths throughout its outburst in 2000. We show that it is possible to separate the optical/near-infrared (OIR) jet emission from the O IR disc emission. Focussing on the jet component, we find that as the source fades in the X-ray hard state, the OIR jet emission has a spectral index consistent with optically thin synchrotron emission (alpha ~ -0.6 to -0.7, where F_nu propto nu^alpha). This jet emission is tightly and linearly correlated with the X-ray flux; L_OIR,jet propto L_X^(0.98 +- 0.08) suggesting a common origin. This is supported by the OIR, X-ray and OIR to X-ray spectral indices being consistent with a single power law (alpha = -0.73). Ostensibly the compact, synchrotron jet could therefore account for ~ 100 % of the X-ray flux at low luminosities in the hard state. At the same time, (i) an excess is seen over the power law decay of the X-ray flux at the point in which the jet would start to dominate, (ii) the X-ray spectrum slightly softens, which seems to be due to a high energy cut-off or break shifting to a lower energy, and (iii) the X-ray rms variability increases. This may be the strongest evidence to date of synchrotron emission from the compact, steady jet dominating the X-ray flux of an X-ray binary. For XTE J1550-564, this is likely to occur within the luminosity range ~ (2 e-4 - 2 e-3) L_Edd on the hard state decline of this outburst. However, on the hard state rise of the outburst and initially on the hard state decline, the synchrotron jet can only provide a small fraction (~ a few per cent) of the X-ray flux. Both thermal Comptonization and the synchrotron jet can therefore produce the hard X-ray power law in accreting black holes.
The black hole X-ray transient, XTE J1118+480, has now twice been observed in outburst - 2000 and 2005 - and on both occasions remained in the low/hard X-ray spectral state. Here we present radio, infrared, optical, soft X-ray and hard X-ray observat ions of the more recent outburst. We find that the lightcurves have very different morphologies compared with the 2000 event and the optical decay is delayed relative to the X-ray/radio. We attribute this lesser degree of correlation to contributions of emission from multiple components, in particular the jet and accretion disc. Whereas the jet seemed to dominate the broadband spectrum in 2000, in 2005 the accretion disc seems to be more prominent and we use an analysis of the lightcurves and spectra to distinguish between the jet and disc emission. There also appears to be an optically thin component to the radio emission in the 2005 data, possibly associated with multiple ejection events and decaying as the outburst proceeds. These results add to the discussion that the term low/hard state covers a wider range of properties than previously thought, if it is to account for XTE J1118+480 during these two outbursts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا