ترغب بنشر مسار تعليمي؟ اضغط هنا

109 - S. C. C. Barros 2011
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 days. The current uncertainty in its impact parameter (0 < b < 0.46) resulted in poorly defined stellar and planetary radii. To better constrain the impact parame ter we have obtained high precision transit observations with the RISE instrument mounted on 2.0 m Liverpool Telescope. We present four new transits which are fitted with an MCMC routine to derive accurate system parameters. We found an orbital inclination of 85.2 pm 0.3 degrees resulting in stellar and planetary radii of 1.56 pm 0.04 Rodot and 1.39 pm 0.05 RJup, respectively. This suggests that the host star has evolved off the main-sequence and is in the shell hydrogen-burning phase. We also discuss how the limb darkening affects the derived system parameters. With a density of 0.17{rho}J, WASP-13b joins the group of low density planets whose radii are too large to be explained by standard irradiation models. We derive a new ephemeris for the system, T0 = 2455575.5136 pm 0.0016 (HJD) and P = 4.353011 pm 0.000013 days. The planet equilibrium temperature (Tequ = 1500 K) and the bright host star (V = 10.4 mag) make it a good candidate for follow-up atmospheric studies.
We present high precision transit observations of the exoplanet WASP-21b, obtained with the RISE instrument mounted on 2.0m Liverpool Telescope. A transit model is fitted, coupled with an MCMC routine to derive accurate system parameters. The two new high precision transits allow to estimate the stellar density directly from the light curve. Our analysis suggests that WASP-21 is evolving off the main sequence which led to a previous overestimation of the stellar density. Using isochrone interpolation, we find a stellar mass of 0.86 pm 0.04 Msun which is significantly lower than previously reported (1.01 pm 0.03 Msun). Consequently, we find a lower planetary mass of $0.27 pm 0.01 Mjup$. A lower inclination (87.4 pm 0.3 degrees) is also found for the system than previously reported, resulting in a slightly larger stellar (R_* =1.10 pm 0.03 Rsun) and planetary radius (R_p = 1.14 pm 0.04 Rjup). The planet radius suggests a hydrogen/helium composition with no core which strengthens the correlation between planetary density and host star metallicity. A new ephemeris is determined for the system, i.e., t0 =2455084.51974 pm 0.00020 (HJD) and P=4.3225060 pm 0.0000031 days. We found no transit timing variations in WASP-21b.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا