ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, espe cially those that emit primarily in hard X-rays (2-10 keV) within the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multi-wavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3 of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding-wind binaries, X-ray binaries, and magnetars. There is also a fifth population that is still unidentified but, based on its X-ray and infrared properties, likely comprise partly of Galactic sources and partly of active galactic nuclei.
A new generation of low frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the Epoch of Reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of widefield low frequency radio interferometry. Precise calibration will be required to separate the small expected EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognised Frequency Modulated (FM) radio band. The observations have implications for future low frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at metre wavelengths to an observer beyond our own solar system.
51 - G. E. Anderson 2010
We present X-ray, infrared, optical and radio observations of four previously unidentified Galactic plane X-ray sources, AX J163252-4746, AX J184738-0156, AX J144701-5919 and AX J144547-5931. Detection of each source with the Chandra X-ray Observator y has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919) and OIf+ (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Fe XXV emission lines in their X-ray spectra at ~6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a colliding-wind binary interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919 and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and colliding-wind binaries in the Milky Way.
We attempt to measure the proper motions of two magnetars - the soft gamma-ray repeater SGR 1900+14 and the anomalous X-ray pulsar 1E 2259+586 - using two epochs of Chandra observations separated by ~5 yr. We perform extensive tests using these data, archival data, and simulations to verify the accuracy of our measurements and understand their limitations. We find 90% upper limits on the proper motions of 54 mas/yr (SGR 1900+14) and 65 mas/yr (1E 2259+586), with the limits largely determined by the accuracy with which we could register the two epochs of data and by the inherent uncertainties on two-point proper motions. We translate the proper motions limits into limits on the transverse velocity using distances, and find v_perp < 1300 km/s (SGR 1900+14, for a distance of 5 kpc) and v_perp < 930 km/s (1E 2259+586, for a distance of 3 kpc) at 90% confidence; the range of possible distances for these objects makes a wide range of velocities possible, but it seems that the magnetars do not have uniformly high space velocities of > 3000 km/s. Unfortunately, our proper motions also cannot significantly constrain the previously proposed origins of these objects in nearby supernova remnants or star clusters, limited as much by our ignorance of ages as by our proper motions.
We present an optical/near-infrared search for a counterpart to the perplexing radio transient GCRT J1745-3009, a source located ~1 degree from the Galactic Center. Motivated by some similarities to radio bursts from nearby ultracool dwarfs, and by a distance upper limit of 70 pc for the emission to not violate the 1e12 K brightness temperature limit for incoherent radiation, we searched for a nearby star at the position of GCRT J1745-3009. We found only a single marginal candidate, limiting the presence of any late-type star to >1 kpc (spectral types earlier than M9), >200 pc (spectral types L and T0-T4), and >100 pc (spectral types T4-T7), thus severely restricting the possible local counterparts to GCRT J1745-3009. We also exclude any white dwarf within 1 kpc or a supergiant star out to the distance of the Galactic Center as possible counterparts. This implies that GCRT J1745-3009 likely requires a coherent emission process, although whether or not it reflects a new class of sources is unclear.
RX J1856.5-3754 is the X-ray brightest among the nearby isolated neutron stars. Its X-ray spectrum is thermal, and is reproduced remarkably well by a black-body, but its interpretation has remained puzzling. One reason is that the source did not exhi bit pulsations, and hence a magnetic field strength--vital input to atmosphere models--could not be estimated. Recently, however, very weak pulsations were discovered. Here, we analyze these in detail, using all available data from the XMM-Newton and Chandra X-ray observatories. From frequency measurements, we set a 2-sigma upper limit to the frequency derivative of dot u<1.3e-14 Hz/s. Trying possible phase-connected timing solutions, we find that one solution is far more likely than the others, and we infer a most probable value of dot u=(-5.98+/-0.14)e-16 Hz/s. The inferred magnetic field strength is 1.5e13 G, comparable to what was found for similar neutron stars. From models, the field seems too strong to be consistent with the absence of spectral features for non-condensed atmospheres. It is sufficiently strong, however, that the surface could be condensed, but only if it is consists of heavy elements like iron. Our measurements imply a characteristic age of about 4 Myr. This is longer than the cooling and kinematic ages, as was found for similar objects, but at almost a factor ten, the discrepancy is more extreme. A puzzle raised by our measurement is that the implied rotational energy loss rate of about 3e30 erg/s is orders of magnitude smaller than what was inferred from the H-alpha nebula surrounding the source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا