ترغب بنشر مسار تعليمي؟ اضغط هنا

We present precision neutron scattering measurements of the Bose-Einstein condensate fraction, n0(T), and the atomic momentum distribution, nstar(k), of liquid 4He at pressure p =24 bar. Both the temperature dependence of n0(T) and of the width of ns tar(k) are determined. The n0(T) can be represented by n0(T) = n0(0)[1-(T/T{lambda}){gamma}] with a small n0(0) = 2.80pm0.20% and large {gamma} = 13pm2 for T < T{lambda} indicating strong interaction. The onset of BEC is accompanied by a significant narrowing of the nstar(k). The narrowing accounts for 65% of the drop in kinetic energy below T{lambda} and reveals an important coupling between BEC and k > 0 states. The experimental results are well reproduced by Path Integral Monte Carlo calculations.
We use neutron scattering to determine spin excitations in single crystals of nonsuperconducting Li1-xFeAs throughout the Brillouin zone. Although angle resolved photoemission experiments and local density approximation calculations suggest poor Ferm i surface nesting conditions for antiferromagnetic(AF) order, spin excitations in Li1-xFeAs occur at the AF wave vectors Q = (1, 0) at low energies, but move to wave vectors Q = (pm 0.5, pm0.5) near the zone boundary with a total magnetic bandwidth comparable to that of BaFe2As2. These results reveal that AF spin excitations still dominate the low-energy physics of these materials and suggest both itinerancy and strong electron-electron correlations are essential to understand the measured magnetic excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا