ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios usin g our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.
Aims. We present here a new theoretical approach to population synthesis. The aim is to predict colour magnitude diagrams (CMDs) for huge numbers of stars. With this method we generate synthetic CMDs for N-body simulations of galaxies. Sophisticated hydrodynamic N-body models of galaxies require equal quality simulations of the photometric properties of their stellar content. The only prerequisite for the method to work is very little information on the star formation and chemical enrichment histories, i.e. the age and metallicity of all star-particles as a function of time. The method takes into account the gap between the mass of real stars and that of the star-particles in N-body simulations, which best correspond to the mass of star clusters with different age and metallicity, i.e. a manifold of single stellar sopulations (SSP). Methods. The theory extends the concept of SSP to include the phase-space (position and velocity) of each star. Furthermore, it accelerates the building up of simulated CMD by using a database of theoretical SSPs that extends to all ages and metallicities of interest. Finally, it uses the concept of distribution functions to build up the CMD. The technique is independent of the mass resolution and the way the N-body simulation has been calculated. This allows us to generate CMDs for simulated stellar systems of any kind: from open clusters to globular clusters, dwarf galaxies, or spiral and elliptical galaxies. Results. The new theory is applied to an N-body simulation of a disc galaxy to test its performance and highlight its flexibility.
493 - A. Rahimi 2009
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [alpha/Fe] is sensitive to the first few Gyrs of star formation history, stars that formed during mergers at different epochs show different [alpha/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا