ترغب بنشر مسار تعليمي؟ اضغط هنا

122 - D. J. Mortlock 2009
Optical and near-infrared (NIR) spectra are presented for ULAS J131911.29+095951.4 (hereafter ULAS J1319+0950), a new redshift z = 6.127 +/- 0.004 quasar discovered in the Third Data Release (DR3) of the UKIRT Infrared Deep Sky Survey (UKIDSS). The s ource has Y_Vega = 19.10 +/- 0.03, corresponding to M_1450,AB = -27.12, which is comparable to the absolute magnitudes of the z ~= 6 quasars discovered in the SDSS. ULAS J1319+0950 was, in fact, registered by SDSS as a faint source with z_AB = 20.1 +/- 0.1, just below the signal--to--noise ratio limit of the SDSS high-redshift quasar survey. The faint z-band magnitude is a consequence of the weak Ly alpha/N V emission line, which has a rest-frame equivalent width of only ~20 A and provides only a small boost to the z-band flux. Nevertheless, there is no evidence from this UKIDSS-based search for a significant population of high-redshift quasars with weak emission lines. The Ly alpha optical depth to ULAS J1319+0950 is consistent with that measured towards similarly distant SDSS quasars, implying that results from optical- and NIR-selected quasars may be combined. Also presented is a new NIR-spectrum of the previously discovered UKIDSS quasar ULAS J020332.38+001229.2, which reveals the object to be a broad absorption line quasar. The new spectrum shows that the emission line previously identified as Ly alpha is actually N V, leading to a revised redshift of z = 5.72, rather than z = 5.86 as previously estimated.
(abridged) We report the discovery of a very cool brown dwarf, ULAS J003402.77-005206.7 (ULAS J0034-00), identified in UKIDSS DR1. We provide optical, near-infrared, and mid-infrared photometry of the source, and two near-infrared spectra. Comparing the spectral energy distribution of ULAS J0034-00 to that of the T8 brown dwarf 2MASS J0415-09, the latest-type and coolest well-studied brown dwarf to date, with Teff~750 K, we find evidence that ULAS J0034-00 is significantly cooler. First, the measured values of the near-infrared absorption spectral indices imply a later classification, of T8.5. Second, the H-[4.49] colour provides an empirical estimate of the temperature of 540<Teff<660 K (+/-2sig range). Third, the J- and H-band peaks are somewhat narrower in ULAS J0034-00, and detailed comparison against spectral models calibrated to 2MASS J0415-09 yields an estimated temperature lower by 60-120 K relative to 2MASS J0415-09 i.e. 630<Teff<690 K (+/-2sig), and lower gravity or higher metallicity according to the degenerate combination -0.5<delta(log g-2[m/H])<-0.25 (+/-2sig). Combining these estimates, and considering systematics, it is likely the temperature lies in the range 600<Teff<700 K. Despite the low inferred Teff we find no evidence for strong absorption by NH3 over the wavelength range 1.51-1.56 um. Evolutionary models imply that the mass and age are in the ranges 15-36 M(Jup) and 0.5-8 Gyr, respectively. The measured proper motion, of (0.37+/-0.07)arcsec/yr, combined with the photometrically estimated distance of 14-22 pc, implies a tangential velocity of ~30 km/s. ULAS J0034-00 is significantly bluer than 2MASS J0415-09 in Y-J, so future searches should allow for the possibility that cooler T dwarfs are bluer still.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا