ترغب بنشر مسار تعليمي؟ اضغط هنا

We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with period s up to 60d and 3871 periodic or quasi-periodic objects, with periods up to 20d for Campaign 1 and 15d for Campaign 0. Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. The resulting catalogue is made available online via the MAST archive at https://archive.stsci.edu/prepds/k2varcat/, and gives the ID, type, period, semi-amplitude and range of the variation seen. We also make available the detrended lightcurves for each object.
We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orb ital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 pm 0.05 mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 pm 0.08 mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 pm 0.04$ and $1.09 pm 0.04 mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.
We present here the first observationally based determination of the rate of occurrence of circumbinary planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with $R_p>6R_oplus$ orbiting with $P_p<300$ d is $10.0 ^{+18}_{-6.5}$% (95% confidence limits), higher than but consistent with single star rates. If on the other hand the underlying planetary inclination distribution is isotropic, then this occurrence rate rises dramatically, to give a lower limit of 47%. This implies that formation and subsequent dynamical evolution in circumbinary disks must either lead to largely coplanar planets, or proceed with significantly greater ease than in circumstellar disks. As a result of this investigation we also show that giant planets (${>}10R_oplus$) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا